Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
The invention relates to a method for measuring a concentration of a gas in a gas mixture, said method comprising that: a light beam modulated in a ramp shape and/or in a step shape in its wavelength and additionally periodically modulated, in particular in its wavelength, is transmitted from a light source, in particular a laser, into a measurement zone; the modulated light beam passes through a gas mixture in the measurement zone and is detected as reception light by a detector, wherein the reception light is converted by the detector into a detector signal; a derivative signal is determined based on the detector signal by performing a transformation of the detector signal into the frequency range, in particular by a Fourier transform of the detector signal, wherein an evaluation of the detector signal transformed into the frequency range is performed, in particular only, for an n-fold of the frequency of the modulated light beam in order to obtain the derivative signal; and at least two measurement values of a phase of the derivative signal are determined and a correction function is calculated based on the determined measurement values of the phase of the derivative signal in order to correct the derivative signal with the correction function.
Abstract:
Un appareil de remise à zéro automatique remet automatiquement à zéro un analyseur de gaz aux infra-rouges lorsque des conditions présélectionnées se produisent, afin d'indiquer l'état zéro en cas d'absorption nulle des rayonnements infra-rouges par un mélange de gaz en cours d'analyse. L'analyseur de gaz comprend une cellule d'échantillonage (11) qui contient un mélange de gaz que l'on veut analyser. Les rayonnements infra-rouges envoyés à travers la cellule d'échantillonnage (11) sont détectés à une longueur d'onde présélectionnée afin de produire un signal de détection. Un processeur de signaux sort des signaux systématiquement associés à la différence entre le signal de détection et un signal de référence. Pour la remise à zéro, la cellule d'échantillonnage (11) est remplie d'un gaz sensiblement non-absorbant des rayonnements infra-rouges à la longueur d'onde caractéristique respective. Un comparateur génère un signal d'erreur lorsque le signal de sortie diffère de zéro. Une commande de gain (DAC 21) commande automatiquement le niveau des signaux de détection afin de réduire le signal de sortie sensiblement à zéro lorsque le gaz non-absorbant remplit la cellule d'échantillonnage (11). Les conditions présélectionnées peuvent inclure l'écoulement d'une période de temps prédéterminée et une dérive de la température au-delß de limites prédéterminées.
Abstract:
Automatic zeroing apparatus zeroes an infrared gas analyzer automatically upon the occurrence of preselected conditions to indicate zero in the absence of absorption of infrared radiation by a gas mixture being analyzed. The gas analyzer has a sample cell (11) for containing a gas mixture to be analyzed. Infrared radiation directed through the sample cell (11) is detected at a preselected wavelength to produce a detection signal. A signal processor outputs a signal systematically related to the difference between the detection signal and a reference signal. For zeroing the sample cell (11) is filled with gas substantially nonabsorbent of infrared radiation at the respective characteristic wavelength. A comparator produces an error signal when the output signal differs from zero. A gain control (DAC 21) automatically controls the signal level of the detection signal to reduce the output signal substantially to zero with the nonabsorbent gas filling the sample cell (11). The preselected conditions may include the passage of a predetermined time and a temperature drift beyond a predetermined limit.
Abstract:
A device may determine a calibration value for a spectrometer using light from a first light source; deactivate the first light source after determining the calibration value; perform measurement with regard to a sample based on the calibration value, wherein the measurement of the sample is performed using light from a second light source; determine that the calibration value is to be updated; and update the calibration value using the light from the first light source.
Abstract:
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.