Abstract:
An acousto-optic waveguide (100) comprises a cladding region (110) comprising a first material having a first refractive index and a first acoustic velocity, and a pair of optical waveguide layers (120,122) embedded in and extending through the cladding region. The optical waveguide layers are separated from one another by a gap region (130) comprising the first material. The optical waveguide layers (120,122) each comprise a second material having a second refractive index that is higher than the first refractive index and a second acoustic velocity that is higher than the first acoustic velocity. The optical waveguide layers (120,122) substantially confine acoustic waves that are generated during optical signal propagation through the acousto-optic waveguide. The acoustic waves are substantially confined to the area around the optical waveguide layers (120,122) and the gap region (130) along the direction of the optical signal propagation.
Abstract:
L'invention concerne un coupleur/séparateur comprenant deux portions de guides d'onde coplanaires voisines (11, 13) s'étendant dans une même direction, la première portion (11) étant à section constante, la deuxième portion (13) étant à section variable de façon que l'indice effectif de la deuxième portion de guide d'onde passe, de l'amont vers l'aval, d'une première valeur inférieure à une deuxième valeur supérieure à l'indice effectif de la première portion, dans des conditions de couplage adiabatique.
Abstract:
The invention relates to a wafer scale process for the manufacture of optical waveguide devices, and particularly for the manufacture of ridge waveguide devices, and the improved waveguides made thereby. The present invention has found a process for achieving sub-micron control of an optical waveguiding layer thickness by providing a dimensionally stable wafer assembly into which adhesive (26) can be introduced without altering the planar relationship between a carrier wafer (12) and an optically transmissive wafer (14) in wafer scale manufacture. This process permits wafer scale manufacture of optical waveguide devices including thin optically transmissive layers. A pattern of spacer pedestals (20) is created by a deposition and etch back, or by a surface etch process to precisely reference surface information from a master surface to a carrier wafer to a thin optically transmissive wafer. The tolerance achievable in accordance with this process provides consistent yield across the wafer.
Abstract:
Ce guide à onde lente comporte : - une région initiale (28) qui s'étend, le long d'un axe optique (10) depuis un début (33) à partir duquel la largeur d'un guide d'onde central (12) commence à diminuer continûment jusqu'à une fin (34) au-delà de laquelle la largeur du guide d'onde central ne diminue plus jusqu'à la fin d'une section (18) de ralentissement, cette région initiale chevauchant une région (56) d'élargissement où la longueur de dents latérales (40) augmente continûment, - une région finale (32) qui s'étend, le long de l'axe optique, depuis un début (36) à partir duquel la largeur du guide d'onde central commence à augmenter continûment jusqu'à une fin (37) au-delà de laquelle la largeur du guide d'onde central n'augmente plus, cette région finale chevauchant une région (60) de rétrécissement où la longueur des dents latérales (40) diminue continûment.
Abstract:
The wavelength tolerance of a frequency doubler is enhanced so as to perform stable operation. Further, with the use of this frequency doubler, a laser source can directly modulate laser. A waveguide (2) and a periodic domain inverted layer (3) are formed on an LiTaO₃ substrate (1) of -C plate, and the waveguide is divided into a plurality of zones (A,B,C) having different propagation coefficients or different periods (Λ A ,Λ B ,Λ C ) of the domain inversion. A fundamental wave (P₁) inputted in the waveguide is converted into a harmonic wave in each of the zones, and is emitted as SHG light (P₂). Parts (δ₁,δ₂) for modulating the phases of the harmonic waves produced in the respective zones are provided between the zones.
Abstract:
The invention relates to a planar optical element comprising a light-conducting layer 10 on a supporting material 11 having a refractive index which is lower than that of the light-conducting layer, which light-conducting layer comprises one or more waveguide channels 13. The waveguide channels are laterally delimited by metal layers 14,15 which extend on either side of each waveguide channel, which metal layers are located between the supporting material and the light-conducting layer and directly contact said light-conducting layer. Preferably, the metal layers are provided in the form of electrodes, such that an electric field can be applied transversely across one or more waveguide channels. Such a planar optical element can be used, for example, as an optical switch and in a device for doubling the frequency of a lightwave.
Abstract:
An optical signal modulator (modulator) includes, in part, a first multitude of diodes coupled in parallel and disposed along an outer periphery of the optical ring of the modulator, a second multitude of diodes coupled in parallel and disposed along the outer periphery of the optical ring, and a doped region adapted to supply heat to the optical ring. A pair of current sources supply substantially constant currents to the first and second multitude of diodes to generate a pair of electrical signals. The modulator further includes, in part, a control circuit adapted to control the temperature of the optical ring in accordance with the pair electrical signals. To achieve this, the control circuit varies the voltage applied to the doped region to vary the supplied heat. Alternatively, the control circuit applies a voltage to the optical ring to maintain a substantially constant resonant wavelength in the optical ring.