Abstract:
The display panel includes a base plate which carries a plurality of pairs of scanning cathodes and display cathodes, oriented in columns, and insulating spacers which, in each pair, separate the scanning and display cathodes into operative pairs, with the pairs being arrayed in rows and columns. The panel also includes a face plate which carries a plurality of anode strips, oriented in rows, each strip overlaying and having a portion in operative relation with a row of scanning and display cathode pairs. In each pair of cathodes, only the display cathode is visible to a viewer. The face plate and base plate are sealed together to form an envelope which is filled with a gas suitable for supporting cathode glow.
Abstract:
The disclosure is of a display panel, known as a bar graph and used for displaying bars of light of varying length. The panel includes an anode and a series of cathode bars, the cathodes being connected in three phases of groups which are formed by a trifilar winding on an insulating base plate. The anode for the panel may be formed on the face plate which is hermetically sealed to the base plate to form a gas-tight envelope which is filled with an ionizable gas.The principles of the invention can be used to make other types of panels having electrodes connected in groups.
Abstract:
A highly efficient, high current density gas discharge display panel having rows of columns of gas discharge cells. Each row and discharge cells communicates with a row of hollow cathodes formed of row-wise extending front and rear cathode means positioned adjacent and essentially parallel to each other. When a forward and rear cathode means are both energized, they operate together to form a row of hollow cathodes. With only the forward cathode means energized, a low current gas discharge exists in a row of cells, which discharge is transferred to the next adjacent row of cells by the application of scanning signals to the forward cathode means. A simplified unitary center sheet houses the cell enclosures and grooves for anode and cathode conductors to eliminate the need for multiple layers which require registration with one another. The novel structure permits a fast scan rate and efficient priming of the cells to avoid the necessity for high voltage video drivers.
Abstract:
A discharge promotion member for a discharge display device consisting of a conductive plate which is provided with a plurality of apertures therethrough, and an insulating porous layer formed on the surface of the conductive plate. The discharge promotion member is located between a cathode and an anode or the like of the discharge display device in which a glow light discharge is carried out through the aperture of the discharge promotion member by a plasma discharge between the cathode and anode of the discharge display device.
Abstract:
In a matrix type gas discharge display device comprising a number of discharge elements at the crossings of the rows and columns of the display matrix, a group of display anodes is disposed at each discharge element by using a corresponding number of insulated wires and by removing insulation of one wire at each discharge element, and such exposed portion is shifted to a successive one of the wires every one of the crossings in a column, so that when the field scanning is made in the column direction, each different anode wire in a group operates successively in cyclic order. The applied scanning voltage is so controlled as to make such successive operation of the anodes. By such a field scanning, each discharge element luminates for a duration which is an integral multiple due to such number, of the duration in the conventional type device provided with only one display anode for each discharge element. The brightness of the displayed picture is increased up to an extent by such integral multiple in a definite and stable manner, and thus noise in the displayed picture can be decreased.
Abstract:
The panel comprises a gas-filled envelope including an elongated base plate having a transverse slot at about its center which divides the plate into two portions. Both portions of the base plate are provided with parallel slots in their top surfaces, and two sets of scan anodes are provided, one set seated in the slots in each portion of the base plate. The inner ends of the scan anodes are bent into and secured in the transverse slot. Two sets of scan-display cathodes are seated on the base plate, one associated with each set of scan anodes, and oriented transverse to the scan anodes and forming rows and columns of scanning or priming cells therewith. An apertured insulating cell sheet having two sets of apertures or cells is seated on the cathodes, with each set of apertures arrayed in rows and columns and overlaying a set of scanning cells, with each display cell aligned with a scanning cell beneath it. Two sets of display anodes are provided, one associated with each set of display cells. The panel envelope is completed by a face plate which covers the display anodes and is sealed to the cell sheet and base plate. The panel is filled with a suitable ionizable gas.Because of its length, in order to achieve favorable brightness in all of the cells of the panel, the two portions of the panel are operated simultaneously. The panel is operated by energizing the two sets of scanning cells sequentially, column-by-column, and, as the columns of scanning cells are energized, selected display anodes are energized by information signals to transfer glow from a scanning cell to the display cell above it.
Abstract:
A flat discharge panel comprises a plurality of cathodes parallel to one another, a plurality of intermediate electrodes each of which intersects the cathodes, and has holes at parts intersecting with the respective cathodes and which are parallel to one another. Anodes are disposed on the sides of the intermediate electrodes remote from the cathodes in a manner to be respectively parallel with the cathodes and auxiliary discharge spaces are provided for the respective cathodes. Main discharge spaces are provided in the anodes in correspondence with the respective priming holes of the intermediate electrodes, so that principally electrons in plasma, created in the auxiliary discharge space, are diffused and accelerated into the main discharge space. A method of driving the flat discharge panel including scanning, based on the transfer of the glow of the auxiliary discharge, is carried out by the use of the intermediate electrodes.
Abstract:
A display device comprising a panel structure including a plurality of gas-filled cells and including, within the body of the panel, gas communication channels extending between selected cells to provide a selective flow of excited gaseous particles from certain cells to others to prime the receiving cells and thereby control the transfer of glow between the cells.
Abstract:
A display panel includes a plurality of dot-like display cells arrayed in rows and columns, with electrodes coupled to the cells in such a way that a plurality of rows or registers of characters can be displayed. Row and column electrodes are coupled to the rows and columns of cells to provide, in each register, a plurality of matrices of cells, each of which can be used to form a character. The panel is operated by selectively firing cells column-by-column, and, to facilitate this operation, the panel includes a column of reset cells positioned adjacent to the first column of cells in the panel and one or more keep-alive cells adjacent to the reset cells. The keep-alive cells are formed by separate anode electrodes and a common cathode electrode which is so constructed and positioned that it does not affect the other electrodes of the panel.