Abstract:
A novel detector for a charged particle beam system which includes multiple gas amplification stages. The stages are typically defined by conductors to which voltage are applied relative to the sample or to a previous stage. By creating cascades of secondary electrons in multiple stages, the gain can be increased without causing dielectric breakdown of the gas.
Abstract:
The gas filled in an envelope contains nitrogen and hydrogen. The nitrogen used as a supplementary gas is not polymerized even when radiation is applied to it, and serves to achieve higher resolution than in the case where carbon dioxide is used as the supplementary gas. The hydrogen can reduce the change of gas gain.
Abstract:
Devices and methods for detecting radiation are described. A detector for detecting radiation comprises a housing containing an ionisable gas, an array of anode wires extending substantially in a first plane, and arranged to be held at a first potential for attracting electrons, and at least one cathode wire spaced in a predetermined relationship from the anode wires, arranged to be held at a second, lower potential. The detector further comprises at least one additional electrode positioned adjacent a periphery of the array of anode wires, and arranged to be held at a third potential, greater than the second potential. A window for a radiation detector is described and comprising a housing containing an ionisable gas is also described. The window comprises a layer formed of an electrically conductive material forming an electrode, a layer formed of a plastic, arranged to support the layer formed of electrically conductive material, and a layer of gas impermeable material.
Abstract:
The invention relates to a radiation detector, an arrangement and a method for an energy-dispersive detection of X-ray photons. X-ray photons are allowed to collide (701) in the radiation detector (201, 601), whereby there are produced (702, 703, 704, 705, 706, 707, 708) observations of the X-ray photons that collided in the detector. According to the invention, there are separately produced observations of X-ray photons (702, 703, 704) that collided in the first detector space (205, 501) of the radiation detector and X-ray photons (705, 706, 707, 708) that collided in the second detector space (206, 502) of the radiation detector. The (712) observations of X-ray photons that collided in the first detector space (205, 501) are ignored, when there is received a simultaneous observation of an X-ray photon that collided in the second detector space.
Abstract:
The invention relates to a method for heating a gas phase stabilizer (5) installed within a gas-filled proportional counter (1) in order to activate the stabilizer (5). According to the invention, the heat is conducted into the proportional counter (1) along a thermal inlet (3), which is in thermal exchange contact with the stabilizer (5). The thermal inlet (3) employed in forming the gas filling can advantageously be employed for heating the stabilizer up to the activating temperature.
Abstract:
There is provided a proportional detector which is intended for use together with an X-ray tube in fluorescence measuring apparatus. The detector comprises a circular-cylindrical body which is divided into a plurality of identical sectors forming the chamber (3) of said detector and which has a circular-cylindrical recess (1) for accommodating an X-ray tube (2).The inner surfaces of the chambers (3) comprise a metal or a metal coating (4) and are electrically conductive. Extending axially within the chambers (3) is a thin wire (5) which forms the positive electrode of the detector. The inner surfaces of the chambers form the negative electrode of the detector. The detector is intended to be placed on the sample to be examined.
Abstract:
A fan-shaped beam of penetrating radiation, such as X-ray or .gamma.-ray radiation, is directed through a slice of the body to be analyzed to a position sensitive detector for deriving a shadowgraph of transmission or absorption of the penetrating radiation by the body. A number of such shadowgraphs are obtained for different angles of rotation of the fan-shaped beam relative to the center of the slice being analyzed. The detected fan beam shadowgraph data is reordered into shadowgraph data corresponding to sets of parallel paths of radiation through the body. The reordered parallel path shadowgraph data is then convoluted in accordance with a 3-D reconstruction method by convolution in a computer to derive a 3-D reconstructed tomograph of the body under analysis. In a preferred embodiment, the position sensitive detector comprises a multiwire detector wherein the wires are arrayed parallel to the direction of the divergent penetrating rays to be detected. A focussed grid collimator is interposed between the body and the position sensitive detector for collimating the penetrating rays to be detected. The source of penetrating radiation is preferably a monochromatic source.
Abstract:
A helical multiwire proportional chamber for detection of minimum ionizing particles consisting of an array of anode wires surrounded by a cathode wound in the form of a bifilar flattened helix nearly orthogonal to the anode wires and this chamber having an active area rectangular in shape, a frame comprising two pieces of plexiglass with a central cutout which forms the said active area, the anode wires being fastened to one of the frame pieces and the second frame piece being fastened to the first and the anode wires being connected in parallel to a positive high voltage supply and the cathode wire being connected to ground through a resistor.