Abstract:
The present invention is directed to a method of Direct Analysis in Real Time (DART) analysis with a carrier gas in the addition of an efficient dopant to the carrier gas stream exiting the DART source. Charge-exchange and proton transfer reactions are observed with the addition of dopants such as toluene, anisole, and acetone. The argon DART mass spectrum in the presence of an efficient dopant was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum of the same aromatic showed both molecular ions and protonated molecule species. Fragment ions generated from analysis with argon gas in the presence of an efficient dopant can be used to distinguish isobaric analytes.
Abstract:
An ion source is disclosed comprising a nebulizer arranged and adapted to emit a liquid spray, a first target arranged downstream of the nebulizer, wherein the liquid spray is arranged to impact upon the first target, and a sample target arranged downstream of the first target, wherein a sample to be analyzed is provided at the sample target.
Abstract:
Before a sample is pierced with a probe of a PESI ion source, a total ion current is measured under a condition with no voltage applied from a high voltage generator to the probe as well as under a condition with the voltage applied. If the probe is properly attached to the holder, a considerable difference in total ion current occurs between the period with no voltage applied and the period with the voltage applied. By comparison, if the probe is improperly attached, no significant difference in the total ion current occurs between the period with no voltage applied and the period with the voltage applied. Referring to a threshold determined under the normal condition, a probe attachment checker detects an insufficient attachment of the probe by checking the difference in the total ion current, and displays an error message on a display unit if an improper attachment is detected.
Abstract:
Methods and devices for mass spectrometry are described, specifically the use of nanoparticulate implantation as a matrix for secondary ion and more generally secondary particles. A photon beam source or a nanoparticulate beam source can be used a desorption source or a primary ion/primary particle source.
Abstract:
A method and apparatus for identification of a counterfeit electronic component, subjecting a suspected counterfeit electronic to an analytical method of ambient surface analysis to desorb and ionize compounds directly from a suspected counterfeit electronic surface with no pretreatment, detecting the resultant ions, comparing the identified ions to known standards, and returning a confidence that the suspected counterfeit electronic being analyzed is counterfeit.
Abstract:
A device for mass spectrometry in continuous operation can be equipped with a focused electron beam source or laser radiation source. It can further include a vacuum chamber, a stage for placing the specimen, and an ion beam column with a plasma source for producing a primary ion beam and a secondary ion mass spectrometer for secondary ion analysis. The ion beam column is connected to an inert gas source and to a reactive gas source and is modified for simultaneous introduction of at least two gases from the inert gas source and reactive gas source. The secondary ion mass spectrometer is of an orthogonal Time-of-Flight type to ensure the function with the ion beam column in continuous operation.
Abstract:
The invention generally relates to methods for analyzing a metabolite level in a sample. In certain embodiments, methods of the invention may involve obtaining a sample, analyzing the sample using a mass spectrometry technique to determine a level of at least one metabolite in the sample, and correlating the metabolite level with an originating source of the sample, thereby analyzing the sample.
Abstract:
An ion source is provided comprising one or more nebulisers and one or more targets, wherein the one or more nebulisers are arranged and adapted to emit, in use, a stream predominantly of droplets which are caused to impact upon the one or more targets and to ionise the droplets to form a plurality of ions. The ion source further comprises one or more electrodes arranged adjacent to and/or attached to the one or more targets wherein the one or more electrodes comprise one or more apertures, notches or cut-outs wherein at least some of the plurality of ions pass, in use, through the one or more apertures, notches or cut-outs.
Abstract:
A sputter neutral particle mass spectrometry apparatus includes a sample table holding a sample which is a mass spectrometry target, an ion beam irradiation device which irradiates an ion beam on the sample held by the sample table to generate neutral particles in an adjacent region of the sample, a light beam irradiation device which irradiates a light beam on the neutral particles positioned in the adjacent region to obtain photoexcited ions, a draw-out electrode which draws out the photoexcited ions, a mass spectrometer which draws in the drawn out photoexcited ions to perform mass analysis, and an optical element which is provided in a light path after the light beam passes the adjacent region, and changes a traveling direction of the light beam so that the light beam passes the adjacent region again.
Abstract:
A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.