Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
Abstract:
Methods and systems for processing a plurality of signals are disclosed herein. Aspects of the method may comprise amplifying an input signal. The amplified input signal may be bandpass filtered. Amplification of the input signal may be adjusted based on only narrowband received signal strength indication of the bandpass filtered amplified input signal. The amplified input signal may be downconverted and a blocker signal may be bandpass filtered from the amplified input signal. Signal strength of a desired signal from the amplified input signal may be measured. The amplification of the input signal may be adjusted utilizing a triple well (TW) NMOS transistor. A control signal may be generated based on the narrowband received signal strength indication of the bandpass filtered amplified input signal. The amplification of the input signal may be adjusted based on at least one of the generated control signals.
Abstract:
A method for processing a plurality of signals may include amplifying an input signal and generating a wideband signal from the amplified input signal. The method may further include bandpass filtering the generated wideband signal to generate a narrowband signal, and adjusting amplification of the input signal based on a narrowband received signal strength indication of the generated narrowband signal, and/or a wideband received signal strength indication of the generated wideband signal. The amplified input signal may be downconverted to generate the wideband signal. The amplified input signal may be downconverted to an intermediate frequency (IF) and/or to a baseband signal to generate the wideband signal. At least one blocker signal may be bandpass filtered from the amplified input signal.
Abstract:
Methods and systems for processing a plurality of signals are disclosed herein. Aspects of the method may comprise amplifying an input signal. The amplified input signal may be bandpass filtered. Amplification of the input signal may be adjusted based on only narrowband received signal strength indication of the bandpass filtered amplified input signal. The amplified input signal may be downconverted and a blocker signal may be bandpass filtered from the amplified input signal. Signal strength of a desired signal from the amplified input signal may be measured. The amplification of the input signal may be adjusted utilizing a triple well (TW) NMOS transistor. A control signal may be generated based on the narrowband received signal strength indication of the bandpass filtered amplified input signal. The amplification of the input signal may be adjusted based on at least one of the generated control signals.
Abstract:
One embodiment of the present subject matter includes a method of receiving an input signal. The method, in various embodiments, includes detecting a peak of the input signal and detecting an envelope of the input signal. In various embodiments, the peak and envelope are used to identify out-of-band blocking signals and to adjust gain control. The method also includes comparing the peak to a first threshold Tp and comparing the envelope to a second threshold Te. In the method, if the peak is above the first threshold and the envelope is below the second threshold, then ignoring the input signal. If the envelope is above the second threshold, the method includes applying automatic gain control to decode information encoded in the input signal.
Abstract:
Methods and systems for processing a plurality of signals are disclosed herein. Aspects of the method may comprise amplifying an input signal. The amplified input signal may be bandpass filtered. Amplification of the input signal may be adjusted based on only narrowband received signal strength indication of the bandpass filtered amplified input signal. The amplified input signal may be downconverted and a blocker signal may be bandpass filtered from the amplified input signal. Signal strength of a desired signal from the amplified input signal may be measured. The amplification of the input signal may be adjusted utilizing a triple well (TW) NMOS transistor. A control signal may be generated based on the narrowband received signal strength indication of the bandpass filtered amplified input signal. The amplification of the input signal may be adjusted based on at least one of the generated control signals.
Abstract:
The mobile radio receiver comprises a variable amplifier (3), a first means (9, 10) for comparison of a signal, which is characteristic of the amplitude of a received signal, with at least one analogue comparison value (PDTHR), a second means (13, 14, 17) for comparison of a signal, which is characteristic of the amplitude of a received signal, with at least one digital comparison value (RSSITHR), and a third means (17, 11) for setting the gain, which is driven by the first means (9, 10) and by the second means (13, 14, 17).
Abstract:
An automatic gain control (AGC) controls the signal amplitude at the input to an analog to digital converter (ADC) input by applying a gain that produces a desired overall amplitude resolution of the patterns actually presented by the signal delivered by the ADC converter. Short RLL patterns will have sufficient resolution for reliable extraction as a result of having sufficient overall amplitude, which thereby strengthens the ability of the read channel to correctly extract data. Moreover, the system determines correct AGC settings responsive to measurements of user data parameters. The system 0 also detects and corrects for DC offsets in the signal whose gain is controlled.
Abstract:
A received frame is branched into a gain control system (20A) for common pilot signals and a gain control system (20B) for individual data signals. The gain control system (20A) controls the gain of the common pilot signals, and the gain control system (20B) controls the gain of the data signals. A signal processor (30) establishes synchronization of frames, outputs a gain control signal (g1) so that the gain of the common pilot signal is constant, to a gain control circuit (21a) for the common pilot signals, and outputs a gain control signal (g2) so that the gain of the data signal is constant, to a gain control circuit (21b) for the data signals. The gain is controlled to be constant, thereby preventing saturation of ADC (26a, 26b, 27a, 27b) and S/N deterioration.