Abstract:
An illuminating device (210) according to an embodiment of the invention included in an image reading apparatus (100) and an image forming apparatus (D) includes light source portions (211a1), (211b1), (211a2) and (211b2), light-guiding members (213a) and (213b) for illuminating an illumination target (G) from an elongated light emitting face (M) that extends in a longitudinal direction (Y), by guiding light from the light source portions, and holding members (216a) and (216b) for holding the light-guiding members. The holding members include holding portions (2161a) and (2161b) for removably holding the light-guiding members, and tilted portions (2162a) and (2162b) that reflect light emitted from the light emitting face (M), the tilted portions extending from a front end on the light emitting face (M) side of the holding portions, obliquely widening with increasing distance from the light-guiding members.
Abstract:
An image reading apparatus which irradiates a document with light, and reads the document image based on the reflected light includes a light source which includes a plurality of LEDs, and irradiates the document with light, an LED current adjusting unit which sets the amount of current to be supplied to each LED by changing the current amounts from the end portion to the central portion in the main scanning direction of document reading, and a driving circuit which drives the LEDs by the current amounts set by the LED current adjusting unit in correspondence with the LEDs.
Abstract:
An image reading apparatus includes a housing, a rod lens array, a light module and a sensor board. The housing accommodates the rod lens array, the light module and the sensor board. The sensor board includes a plurality of light sensor chips. The light module includes a light guide, a light source and guide terminals extending from the light source. The guide terminals are electrically connected to the sensor board with resilient contacts.
Abstract:
An optical scanner includes an optical housing, which houses a light source, an aperture stop, a condensing lens and a rotary deflector, light from the light source entering into the rotary deflector via the aperture stop and the condensing lens, and the light deflected by the rotary deflector scanning a target to be irradiated, a fastener, which fastens the condensing lens to the optical housing, and a fastener attachment portion to which the fastener is attached, the fastener attachment portion being disposed in a downstream side of the condensing lens in a traveling direction of the light in the housing.
Abstract:
An image reading apparatus includes a housing, a rod lens array, a light module and a sensor board. The housing accommodates the rod lens array, the light module and the sensor board. The sensor board includes a plurality of light sensor chips. The light module includes a light guide, a light source and guide terminals extending from the light source. The guide terminals are electrically connected to the sensor board with resilient contacts.
Abstract:
An optical scanning apparatus constructed to dispose optical elements guiding light beams to a deflector such as a rotary polygon mirror at a low cost with high accuracy, includes a first light source, a second light source, a deflector, a first optical member provided on a first optical path between the first light source and the deflector, a second optical member provided on a second optical path between the second light source and the deflector, and one wall holding both of a side surface of the first optical member and a side surface of the second optical member.
Abstract:
An integrated image module for a document scanner includes a one piece die cast housing having a datum element and a support element. An imaging sensor array is enclosed in the housing. An array bias element urges the imaging sensor array against the datum element to provide accurate placement of the sensor array relative to the housing. A transport mechanism is attached to the housing so that the position of the transport mechanism accurately corresponds to the position of the imaging sensor array. The lens and the lamp for illumination are also attached to the housing so that the primary components of the imaging portion of the scanner are contained in a single module.
Abstract:
The present invention provides a lamp tube support structure, which comprises a support piece for fixing a lamp tube. The lamp tube support structure comprises a first half and a second half. The first half has a gap. A clamping portion is formed at two extension ends of the gap. A guard ear is annularly disposed at the inner edge of the gap. Grooves are disposed at left and right ends of the second half. A wing portion is formed below the grooves. The wing portion can be jammed into a hole of a rack for supporting the lamp tube after being bent. The wing portion will elastically spring back to be erectly fixed on the rack. When the lamp tube is placed at the gap of the support piece, it will be fixedly supported on the rack.
Abstract:
A contact image sensor unit includes: a light source (10) illuminating an original; a rod-like light guide (11) guiding light from the light source to the original; an imaging element (12) forming reflected light from the original on a plurality of photoelectric conversion elements; a sensor substrate (14) on which the plurality of photoelectric conversion elements are mounted; a frame (15) to which they are attached and which has a positioning part (200) for attaching the light guide (11) thereto; and a supporting member (16) which attachably/detachably supports the light guide (11) and is attachably/detachably attached to the positioning part (200). Since the light guide (11) can be attached to the frame (15) without using an adhesive, the deformation of the light guide (11), the warpage of the contact image sensor unit and so on can be prevented.
Abstract:
An illuminating apparatus includes a columnar light guide, a board having a light source fastened on one surface thereof, and a holder. The holder is formed with a through-hole into which an end of the light guide in the columnar center axis direction is fitted to hold the light guide, and a catch that catches and holds the board with the light source facing the end surface of the light guide in the columnar center axis direction in the through-hole.