Abstract:
An image reading device includes: a line illuminator for irradiating a document G; an erecting equal-magnification lens array operative to condense light reflected by the document G and including a stack of a first lens array plate and a second lens array plate each provided with an arrangement of a plurality of lenses on both sides thereof; a line image sensor operative to receive the light condensed by the erecting equal-magnification lens array; a housing for securing the line illuminator, the erecting equal-magnification lens array, and the line image sensor in their places; and a first light shielding member, a second light shielding member, and a third light shielding member operative to prevent light not contributing to imaging from entering the lenses. The first light shielding member, the second light shielding member, and the third light shielding member are formed as one piece with the main part of the housing.
Abstract:
An image sensor and a manufacturing method thereof are provided, so that the warp or the distortion is not caused even if there is the thermal expansion difference or the thermal contraction difference in the longitudinal direction between the linear illuminating device and the frame. The image sensor comprises a linear illuminating device for illuminating an original; a light-receiving element array for receiving reflected light from the original; a lens array for focusing the original on the light-receiving element array; a frame for containing the linear illuminating device, the lens array, and the light-receiving element array; and a resilient retaining portion for pressing the linear illuminating device, which is mounted in the frame, into the frame.
Abstract:
A method for correcting recording positions of light beams scanned by a light beam scanning apparatus, in which at least one of plural light beams is deflected by an optical deflecting device and all the plural light beams are combined and scanned by a common scanning optical system. The beam position correction data for the optical deflecting device for keeping positions of the light beams constant is obtained by detecting the beam positions before the scanning optical system. The recording positions of respective light beams on a recording surface is also detected to obtain an additional correction data for correcting deviations of the recording positions due to uneven optical power distribution of the light beam or astigmatism of the scanning optical system. The additional correction data is added to the beam position correction data to obtain the final correction data, by which the optical deflecting device is controlled.
Abstract:
A lens unit (U15) includes a housing (45), an upper and a lower lens arrays (A1′, A2′), and a first and a second prisms (4A, 4B). Each of the lens arrays includes a plurality of lenses, a light-shielding member (4), and a plurality of positioning projections, all of which are integral with each other. Downwardly traveling light which enters the housing (45) through a first slit (45c) formed at an upper portion of the housing (45) is directed upward by the first prism (4A) to pass through the two lens arrays (A1′, A2′). The light is then directed downward by the second prism (4B) to exit the housing through a second slit (45d) formed at a lower portion of the housing (45).
Abstract:
A sensor chip arranged in a casing having a window portion on the side thereof to be faced to a medium to be read takes in the form of a single long chip. In particular, a single long and seamless sensor chip having a plurality of photoelectric conversion elements arranged thereon throughout a length of the window portion of the casing is mounted on a long supporting substrate having a length long enough to support the whole sensor chip. The sensor chip and the supporting substrate are bonded together such that transmission of stress due to external force exerted on the supporting substrate to the sensor chip is restricted.
Abstract:
An image reading apparatus having a light guide unit with a light source for applying light to an image reading surface, and a board provided with a photoelectrical conversion element for photoelectrically converting light reflected from the image reading surface into an electrical signal, wherein the light guide unit is supported by the board by making the light guide unit in contact with the board.
Abstract:
A contact-type image sensor assembly including: an image sensor; a light source for illuminating an original document which has image information; an optical lens for imaging light reflected by the original document onto the image sensor; and a supporting member for supporting the image sensor, the light source and the optical lens, wherein the supporting member includes: a first supporting member for maintaining the distance from the surface of the original document and the light incidental side of the optical lens at a predetermined distance; a second supporting member disposed individually from the first supporting member and acting to maintain the distance from the light emission side of the optical lens to the light receiving side of the image sensor; and a third supporting member for supporting the first and second supporting members at predetermined positions and the third supporting member supports the first and second supporting members in this way that their positions can be adjusted.
Abstract:
A lens unit (U15) comprises a housing (45), upper and lower lens arrays (A1', A2'), and first and second prisms (4A, 4B). Each of the lens arrays includes a plurality of lenses (2) formed integrally, an optical shield (4), and a plurality of positioning projections (12). Light passing downward through a first slit (45c) formed in an upper part of the housing (45) into the housing (45) is directed upward by the first prism (4A) and allowed to pass between the two lens arrays (A1', A2'). The light is directed downward by the second prism (4B), and it exits through a second slit (45d) formed in a lower part of the housing (45).
Abstract:
An apparatus for recording an image onto a light recording medium (16) includes a light source (120) which emits light at a position which is movable over a light emitting area (21) of the light source controlled by a controller (13). A light position sensor (142) has a target area optically coupled to light emitted from a plurality of positions within the light emitting area of the light source used for recording for detecting the position of the light intersecting the target area of the sensor from the light emitting area of the light source and generating a signal dependent upon the light intersecting the target area. A controller (13), responsive to the signal, produces a correction parameter and controls the position of the light on the light emitting area of the light source with the correction parameter during recording. The present invention also reduces the effects of recording errors which occur near section boundaries as the sections are recorded onto a recording medium.