Abstract:
A ballast to energize a lamp is provided. The ballast comprises a buck converter connected to an inverter via a switching component. The buck converter includes a transistor, a capacitor, a diode, and an inductor. The switching component has a predetermined breakover voltage value and is configured to provide a start up signal to the inverter when voltage at the switching component increases to the predetermined breakover voltage value. A control circuit is configured to monitor the voltage at the switching component while the voltage at the switching component increases to the predetermined breakover voltage, and is configured to generate a gate drive pulse at a gate terminal of the transistor when the voltage at the switching component reaches a predetermined voltage that is less than the breakover voltage of the switching component.
Abstract:
In an embodiment, a method comprises receiving a path advertisement comprising information about an available path and a well-known community value associated with the available path. A modified best path calculation is performed in response to receiving the available path either from a higher-ranked device or from a device that is not participating in diverse path calculation, resulting in creating a particular best path. The particular best path is advertised to other routers with or without a restriction indicator based on whether it is a client learned path or non-client iBGP peer learned path and based on whether the advertisement is directed to a client or a non-client iBGP peer.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
A two level lighting ballast is provided, which includes a self-oscillating inverter circuit and a control circuit. The inverter includes an input; an output to selectively provide current to energize a lamp; a switching circuit operating at a switching frequency; a feedback transformer; and an impedance component. The feedback transformer is connected to the output, and drives the switching circuit based on the lamp current. The impedance component is connected in parallel with the feedback transformer, and is operated by the control circuit. When the control circuit enables the impedance component, the switching circuit operates in a first frequency range, and a first lamp current is provided. When the control circuit disables the impedance component, the switching circuit operates in a second frequency range, and a second lamp current is provided. The first frequency range is lower than the second, and the first lamp current is greater than the second.
Abstract:
A network device component receives traffic, determines whether the traffic is host bound traffic or non-host bound traffic, and classifies, based on a user-defined classification scheme, the traffic when the traffic is host bound traffic. The network device component also assigns, based on the classification, the classified host bound traffic to a queue associated with network device component for forwarding the classified host bound traffic to a host component of the network device.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
Embodiments of the current invention describe a high performance combinatorial method and apparatus for the combinatorial development of coatings by a dip-coating process. The dip-coating process may be used for multiple applications, including forming coatings from varied sol-gel formulations, coating substrates uniformly with particles to combinatorially test particle removal formulations, and the dipping of substrates into texturing formulations to combinatorially develop the texturing formulations.
Abstract:
A unique real time tuning (RTT) process is employed for obtaining the desired optimum device parameter adjustments. The RTT parameter adjustment process is utilized with IP phone or other device chipsets as desired. In one embodiment, RTT provides a graphical user interface to a digital signal processor (DSP), or the like, on the device chipset allowing for observation, evaluation and control of the device parameters in real time. The real time exchange of the device parameter information between the device and an external workstation, e.g., a personal computer or the like, is provided by a User Datagram Protocol (UDP) that runs on a controller on the device, e.g., an ARM processor or the like. In this example, the unique combination of the RTT, UDP and DSP cooperate advantageously to implement, in accordance with the principles of the invention, the desired observability, and control to designers to tune the device, e.g., IP Phone, in real time to specified hardware, plastics, audio requirements required by existing standards or the like.
Abstract:
A restart circuit for causing an electronic ballast to perform a restart in response to reconnecting any lamp of a multiple lamp configuration of the electronic ballast to the electronic ballast is disclosed. The electronic ballast includes a filament health check circuit for providing a first current through a monitored filament of the lamps to a controller of the ballast. The controller restarts the electronic ballast when a determined ratio of the first current to a reference current indicates that the monitored filament has been disconnected or broken (i.e., the first current substantially decreases) and is subsequently replaced or reconnected to the ballast (i.e., the first current returns to a predetermined level). The ballast further comprises a dv/dt circuit for reducing the first current for a transient time period in response to reconnecting a filament other than the monitored filament to the ballast, causing the controller to restart the ballast.