Abstract:
A control circuit (115), a control method, a DC-DC converter and an electronic device are provided. The control circuit (115) is used to control the DC-DC converter to switch its operation modes. In the control circuit (115), whether mode of the DC-DC converter is to be switched is judged according to parameters of a first duration of an active duration and a second duration of an inactive duration. Comparison of analogue values is prevented, and as a result, the use of the analogue comparator is reduced, thus the influence of the semiconductor processes on designing a controller can be reduced.
Abstract:
Methods of configuring dynamic memory associated with a processing system, are described. The dynamic memory is configured in a plurality of blocks, the method comprises: a) receiving information relating to a utilisation status of the memory; b) processing the received information to determine at least one first block of the memory that is currently not in use for information storage; and c) configuring the at least one first block to be excluded from an information refresh process.
Abstract:
A signal filter (100) comprises a first transferred impedance filter, TIF, (TIFA) having four differential signal paths (PA,1, PA,2, PA,3, PA,4) and a second TIF (TIFB) having four differential signal paths (PB,1, PB,2, PB,3, PB,4)−. A first differential signal port of the first TIF (32A) is coupled to a first differential signal port of the second TIF (32B). A first clock generator (12A) is arranged to provide first-TIF clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKA,Q−) having four non-overlapping phases for selecting the respective first-TIF differential signal paths (PA,1, PA,2, PA,3, PA,4), and a second clock generator (12B) is arranged to provide second-TIF clock signals (CLKB,I+, CLKB,Q+, CLKB,J−, CLKB,Q−) having four non-overlapping phases for selecting the respective second-TIF differential signal paths (PB,1, PB,2, PB,3, PB,4). The phases of the second-TIF clock signals (CLKB,I+, CLKB,Q+, CLKB,Q−) are equal to the phases of the first-TIF clock signals (CLKA,I+, CLKA,Q+, CLKA,I−, CLKA,Q−) delayed by 45 degrees. The first-TIF first, second, third and fourth clock signals (CLKA,I+, CLKA,Q+, CLKA,I−L, CLKAQ−) and the second-TIF first, second, third and fourth clock signals (CLKB,I+, CLKB,Q+, CLKB,I−, CLKB,Q−) have a duty cycle in the range 16.75% to 25%.
Abstract:
A digital class D amplifier (10) is disclosed, comprising a pulse width modulator (PW Mod) comprising: a digital loop filter (Loop F) adapted to receive an input signal (x[n]) and a feedback signal (fb[n]), the digital loop filter (Loop_F) being adapted to process at a clock frequency (f_s) said input and feedback signals for providing as output a filtered digital signal (w[n]); a PWM conversion module (PW_CM) having an input (24) for receiving the filtered digital signal (w[n]) and having a first output (25) connected to the digital loop filter (Loop F), the PWM conversion module being adapted for processing the filtered digital signal (w[n]) and providing at said first output (25) the feedback signal (fb[n]). The PWM conversion module (PW_CM) comprises: a first comparator (CMP_N) adapted to compare the filtered digital signal (w[n]) with a first reference triangular waveform (VTn[n]) for providing as output a first PWM signal (yn[n]), the first reference triangular waveform having a frequency (f_osc) much lower than said clock frequency (f.s); a second comparator (CMP_P) adapted to compare the filtered digital signal (w[n]) with a second reference triangular waveform (VTp[n]) for providing as output a second PWM signal (yp[n]), the second reference triangular waveform (VTp[n]) being the inverse of the first triangular waveform (VTn[n]), said first (yn[n]) and second (yp[n]) PWM signals representing a differential output pulse width modulated signal (yn[n],yp[n]).
Abstract:
A multi-level sigma-delta Analog to Digital converter provides multi-level outputs using a quantizer with reduced quantization levels. The converter comprises a direct path comprising a computation block, an analog integrator and the quantizer with reduced quantization levels. Further, the converter comprises a feedback path arranged to provide to the computation block a feedback analog signal. The direct path comprises a first amplification block having a gain factor which is the inverse of the gain factor of a second amplification block of the feedback path. The converter allows reduction of the complexity of the quantizer.
Abstract:
Systems and methods for suppressing pop-up noise in an audio signal are disclosed. The system includes a driver circuit shared by a pin interface and a complementary pin interface. A control unit is coupled to the pin interface and the complementary pin interface. To activate the pin interface, the control unit is configured to first activate the driver output at the complementary pin interface. Once the complementary pin interface achieves a preset voltage, the driver output is switched to the pin interface by the control unit. In addition, the driver circuit can be calibrated for a DC offset on the complementary pin interface by re-using calibration data calculated at the pin interface. Further, DC correction signals can be provided from a pre-biasing circuit based on the calibration data of the driver circuit.
Abstract:
The invention concerns a method of generating at least a first panoramic picture and a second panoramic picture based on a series of frames acquired by one frame acquisition device while said device is panned in a main direction, a global motion value and a perspective transform being computed for each pair of consecutive frames of the series, the global motion value reflecting a displacement in the main direction between the frames of a pair of frames and the perspective transform reflecting a perspective change between the frames of a pair of frames. For each frame of the series, a first area of the frame is determined for the first panoramic picture and a second area of the frame, distinct from the first area, is determined for the second panoramic picture. The method comprises, upon acquisition of a current frame of the series of frames, determining a first frame among the already acquired frames of the series of frames, which has second area that shares at least a common area with the first area of the current frame, calculating a global transform based on the perspective transforms of the pairs of consecutive frames that have been acquired between the first frame and the current frame and determining an adapted first area by applying an inverse of the global transform to the first area of the current frame, the adapted first area being included into the first panoramic picture and the second area of the current frame being included into the second panoramic picture.
Abstract:
A built-in receiver self-test system provides on-chip testing with minimal change to the receiver footprint. The system digitally generates a two-tone test signal, and tests the nonlinearities of the receiver using the generated two-tone test signal. To that end, the self-test system comprises a stimulus generator, a downconverter, and a demodulator, all of which are disposed on a common receiver chip. The stimulus generator generates a test signal comprising first and second tones at respective first and second frequencies, where the first and second frequencies are spaced by an offset frequency, and where the first frequency comprises a non-integer multiple of the offset frequency. The downcoverter downconverts the test signal to generate an In-phase component and a Quadrature component. The demodulator measures an amplitude of the intermodulation tone by demodulating the In-phase and Quadrature components based on a reference frequency.
Abstract:
Methods and systems for performing interference mitigation (immunity management) in a radio communication device. A list of frequencies is provided from at least one radio subsystem to an immunity management (IMM) module. The IMM module determines whether any of the frequencies in the list represent a conflict with harmonics associated with one or more clock frequencies associated with one or more embedded systems. If a conflict exists, then the IMM module makes a change in the fundamental frequency of the corresponding clock to remove the conflict, while also ensuring that other frequencies in the list are not impacted by the change. The potential need to change clock frequencies can be evaluated at state transitions of the device, e.g., call establishment, call release, handover or channel re-allocation events.