Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprise a radiation emitting region and at least one substantially radiation opaque region. The radiation emitting region comprises a pair of dielectric elements disposed in a substantially coaxial arrangement.
Abstract:
The invention relates to an ultraviolet radiation lamp. The lamp comprises a substantially sealed cavity comprising a mercury-containing material; a filament disposed in the sealed cavity; and an electrical control element in contact with the filament, the electrical control element configured to adjust or maintain a temperature of the mercury-containing material with respect to a prescribed temperature. Such a constructions allows the present ultraviolet radiation lamp to be operated at optimal efficiency without the need to use additional components to add heat to and/or remove heat from the mercury-containing material.
Abstract:
There is disclosed a process for measuring transmittance of a fluid in a radiation field comprising polychromatic radiation - i.e., radiation at a first wavelength and radiation at a second wavelength different from the first wavelength. The process comprises the steps of: (i) positioning a polychromatic radiation source and a polychromatic radiation sensor element in a spaced relationship to define a first thickness of fluid in the radiation field; (ii) detecting a first . radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the first thickness; (iii) detecting a second radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the first thickness; (iv) altering the first thickness to define a second thickness; (v) detecting a third radiation intensity corresponding to radiation at the first wavelength received by the sensor element at the second thickness; (vi) detecting a fourth radiation intensity corresponding to radiation at the second wavelength received by the sensor element at the second thickness; and (vii) calculating radiation transmittance of the fluid in the radiation field from the first radiation intensity, the second radiation intensity, the third radiation intensity and the fourth radiation intensity. Thus, the present process relates to a novel manner to measure UV transmittance of a fluid in an on-line or random measurement manner.
Abstract:
The present invention relates to a fluid treatment system comprising: an inlet; an outlet; and a fluid treatment zone disposed between the inlet and the outlet. The fluid treatment zone has disposed therein: (i) an. elongate first radiation source assembly having a first longitudinal axis, and (ii) an elongate second radiation source assembly having a second longitudinal axis. The first longitudinal axis and the second longitudinal axis are non-parallel to each other and to a direction of fluid flow through the fluid treatment zone. The present fluid treatment system has a number of advantages including: it can treat large volumes of fluid (e.g., wastewater, drinking water or the like); it requires a relatively small "footprint"; it results in a relatively lower coefficient of drag resulting in an improved hydraulic pressure loss/gradient over the length of the fluid treatment system; and it results in relatively lower (or no) forced oscillation of the radiation sources thereby obviating or mitigating of breakage of the radiation source and/or protective sleeve (if present). Other advantages are discussed in the specification.
Abstract:
An ultraviolet fluid treatment system having feedback control using a kinetic model and a reactor model that interact with one another. The kinetic model uses readily measured fluid properties upstream and downstream of a radiation zone to calculate the conversion of a target contaminant as it passes through the fluid treatment system. This obviates the need to measure the contaminant concentration directly, which generally is too slow to permit real-time control. A reactor model relates system operating cost to system operating parameters, such as electrical power consumption and/or rate of oxidant addition, where applicable. The reactor model is linked to the kinetic model and is used to optimize operating cost by adjusting system operating parameters based on a comparison between the conversion obtained from the kinetic model and the overall treatment objectives. A control center, an ultraviolet fluid treatment apparatus, and a method of treating a fluid are also disclosed.
Abstract:
A radiation source module comprising a support member, a radiation source assembly connected to the support member, the radiation source assembly comprising at least one elongate radiation source having a source longitudinal axis and a module-to-surface seal disposed on a first elongate surface of the module, the first elongate surface comprising a first longitudinal axis transverse to the source longitudinal axis, the seal operable to provide a substantially fluid tight seal between the first surface and a second surface which is adjacent to the first surface. A fluid treatment system employ the radiation source module is also described.
Abstract:
A cleaning formulation comprising a cleaning agent, a particulate clay material and an aqueous carrier. In a preferred embodiment, the formulation has a pH less than about 1.0 and is characterized by: (i) at least a 90% reduction in viscosity at 25°C at a shear rate of up to about 0.10 s -1 , and (ii) a substantially unchanged viscosity for a period of at least 60 days. The cleaning formulation is thixotropic and has a highly desirable combination of acid stability, temperature stability, electrolyte stability and ultraviolet radiation stability.
Abstract:
An optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means. The attenuating aperture means reduce the amount of UV radiation on the sensor means and improve the sensors resistance to degradation in a high intensity UV radiation environment. A fluid disinfection system incorporating the sensor is also described.
Abstract:
A fluid disinfection unit comprising a fluid treatment housing, an electrical supply module and electrical connection means connecting the fluid treatment housing and the electrical supply module; the fluid treatment housing comprising a fluid inlet and a fluid outlet in communication with a reaction chamber, an ultraviolet radiation lamp disposed in the reaction chamber and having a first electrical connection receiving means at a first end thereof and a second end thereof being closed, the second end of the ultraviolet radiation lamp being received and held in place by fixture means; the electrical supply module comprising ballast means and a second electrical connection receiving means; and the electrical connection means comprising lamp receptacle connector means at one end thereof for removable connection to the ultraviolet radiation lamp and electrical connection receiving means for connection to the electrical supply module.
Abstract:
A fluid treatment system includes one or more radiation sources arranged in an irradiation zone within a treatment zone through which fluid to be treated passes and is irradiated. The irradiation zone has a closed cross section to maintain the fluid within a predefined maximum distance from the radiation source. Preferably, the irradiation zone comprises a reduced cross-sectional area perpendicular to the direction of fluid flow and thus the fluid flow velocity is increased through the irradiation zone. This allows the fluid to enter the treatment zone at relatively low speed, traverse the irradiation zone at high speed and exit the treatment zone again at relatively low speed to minimize the loss of hydraulic head throughout the system. Fluid entering the treatment zone passes through an inlet transition region wherein the cross-sectional area is reduced prior to entering the irradiation zone and fluid exiting the irradiation zone passes through an outlet transition region wherein the cross-sectional area is increased. Each transition region is designed to reduce hydraulic head losses as the fluid flow velocity is increased and decreased. In the irradiation zone, radiation sources are mounted on radiation modules which are arranged to provide improved accessibility for maintenance. The radiation modules may also be provided with cleaning assemblies which are operable to remove materials fouling the radiation sources in situ while the radiation sources are in the irradiation zone.