Abstract:
Gradient permittivity films are described. In particular, gradient permittivity films including a plurality of layers each having a thickness where at least one layer is perforated and has a different air volume fraction from another of the plurality of layers by at least 0.05. Such films may be useful in improving the signal to noise ratio for transmitting and receiving units operating between 20 GHz and 300 GHz behind a protective cover.
Abstract:
Techniques are described for monitoring and controlling fall protection equipment. For example, the techniques of this disclosure may be used to monitor the connection status of fall protection equipment, e.g., whether or not the fall protection equipment is connected to a support structure. The techniques described in the disclosure may determine whether the fall protection equipment is connected to a support structure based on changes in a resonant frequency of an electronic circuit of an inductive sensor within the fall protection equipment. The inductive sensor may be formed from sets of one or more coils, where a first set of one or more coils and a second set of one or more coils are wound in opposite directions.
Abstract:
A fall arresting device including a device housing, a shaft within the housing, a rotor assembly rotatably connected to the shaft that includes a drum and a disc having at least one region of a ferromagnetic material, an extendable lifeline connected to the drum, a magnetic sensor positioned stationary relative to the device housing and adjacent to the disc, and a that includes a hard-magnetic material. The magnet positioned stationary relative the device housing and the magnetic sensor, where the magnetic sensor is configured to detect a change in a magnetic field produced by the magnet when the disc rotates about the shaft, the change in the magnetic field induced by the at least one region of the ferromagnetic material being brought within close proximity to the magnet as the disc rotates.
Abstract:
Wireless sensing devices including stable near-field antennas are provided. A spacer layer is attached to a portion of the substrate adjacent to the antenna. The spacer layer has a thickness T , a relative permittivity k , and a figure of merit defined as the ratio of T (in micrometers) by k . The spacer layer has the figure of merit no less than 20 (micrometers).
Abstract:
A computing system may send and receive data from a variety of other devices, such as abrading tools and consumable abrasive products. The computing system may use this data for various purposes, such as tracking worker vibration dosage, monitoring inventory, promoting use of personal protective equipment, and other purposes.
Abstract:
According to one embodiment, a method can comprise: providing a tool that has a first portion that comprises a first material and a second portion that comprises a second material, wherein the second material differs from the first material and the tool is subject to a magnetic field, and wherein the first material and the second material are provided such that the magnetic field is relatively stronger at and adjacent the first portion relative to the magnetic field at and adjacent the second portion; positioning a surface adjacent to the tool so as to be subject to the magnetic field; and disposing magnetizable abrasive particles on the surface, wherein the magnetizable abrasive particles are attracted to an area on the surface adjacent the first portion where the magnetic field is relatively stronger so as to provide for at least one of a desired orientation, placement and alignment of a majority of the magnetizable abrasive particles on the surface.
Abstract:
The disclosure describes techniques and systems for detecting a crack or defect in a material. In some examples, a method for detecting a crack or defect in a material may include applying an electrical signal across an electrode pair electrically coupled to the material; determining a reactive parameter between the electrode pair; and determining whether the material includes a crack or other defect based on the reactive parameter. In some examples, the reactive parameter may include a capacitance, an electrical phase difference, or the like.
Abstract:
A bonded abrasive wheel comprises magnetizable abrasive particles retained in a first organic binder. The bonded abrasive wheel has a central portion adjacent to a central hub, an outer circumference, and a rotational axis extending through the central hub. A majority of the magnetizable abrasive particles are substantially parallel to the rotational axis. A method of making the bonded abrasive wheel is also disclosed.
Abstract:
Systems and methods are provided for determining sensor or infrastructure placement in a fluid network, for determining an anomaly of interest in the fluid network, and for optimally determining sensor coverage in a fluid network, which are based on a model of the fluid network represented by a directed graph.
Abstract:
In general, techniques are described for filter media monitoring within a filtration system. The filter media monitoring techniques described herein include, for example, direct contact with the filter media, e.g., a sensor may be located inside a boundary defined by a surface of the filter media, or indirect contact with the filter media, e.g., a sensor may be located outside the boundary defined by the surface of the filter media such that the sensor does not make direct physical contact with the filter media being monitored.