Abstract:
Coated abrasive articles comprises a backing having a major surface with an abrasive layer disposed thereon. The abrasive layer has an outer major surface comprising ridges separated by valleys, wherein the abrasive layer comprises magnetizable particles and abrasive particles in a binder. Each of the ridges is irregularly shaped and is oriented along at least a portion of its length substantially parallel to adjacent ridges. Methods of making the same involving a modulated magnetic field are also disclosed.
Abstract:
A magnetic film includes a plurality of magnetically permeable particles dispersed between opposing first and second major surfaces of the magnetic film. The first and second major surfaces are spaced apart a distance D. The particles are agglomerated so as to form a plurality of substantially continuous layers of particles generally extending along orthogonal first and second directions and arranged along a third direction. Each substantially continuous layer of particles has a length L along the first direction from a first to an opposing second edge of the magnetic film and a width W along the second direction extending from the first to the second major surface. L/D ≥ 100.
Abstract:
There is provided fall protection equipment, such as a self-retracting lifeline (SRL), including features that enable the SRL to determine a worker's location and a map of a surface on which the worker is working. There is also provided an SRL having a lifeline with a distal end for connection to a user, at least one sensor adapted to determine the tension in the lifeline, and a computing device comprising a processor and a memory.
Abstract:
A system for use in wirelessly monitoring a pipeline such as a natural gas pipe. The system includes a locator configured to wirelessly transmit power and a subsoil sensor marker located adjacent the pipe and configured to wirelessly communicate with the locator. The sensor marker includes a microcontroller, a memory module, a sensor configured to sense the presence of a gas, and a power module. The power module is configured to harvest a sufficient amount of the power wirelessly transmitted from the locator in order to operate the microcontroller to take a measurement via the sensor, save the measurement in the memory module, and wirelessly transmit the measurement to the locator.
Abstract:
Techniques are described for monitoring and controlling fall protection equipment. For example, the techniques of this disclosure may be used to monitor the connection status of fall protection equipment, e.g., whether or not the fall protection equipment is connected to a support structure. The techniques of this disclosure may also be used to control the operation of the fall protection equipment based on the connection status.
Abstract:
According to one embodiment, a method of making an abrasive layer on a backing is disclosed. The method can comprise: providing a distribution tool having a dispensing surface with cavities, providing a backing having a first major surface, supplying magnetizable abrasive particles to the dispensing surface such that at least one of the magnetizable abrasive particles is disposed in a respective one of the cavities, applying a magnetic field to retain the magnetizable abrasive particles disposed in the cavities, aligning the backing with the dispensing surface with the first major surface facing the dispensing surface, transferring the magnetizable abrasive particles from the cavities to the backing, sequent to or simultaneous with transferring the abrasive particles, removing or changing a magnetic field so the magnetic field no longer retains the magnetizable abrasive particles in the cavities.
Abstract:
In some examples, a system includes a self-retracting lifeline (SRL) comprising one or more electronic sensors, the one or more electronic sensors configured to generate data that is indicative of an operation of the SRL; and at least one computing device comprising one or more computer processors and a memory comprising instructions that when executed by the one or more computer processors cause the one or more computer processors to: receive the data that is indicative of the operation of the SRL; apply the data to a safety model that predicts a likelihood of an occurrence of a safety event associated with the SRL; and perform one or more operations based at least in part on the likelihood of the occurrence of the safety event.
Abstract:
Systems and methods are provided for optimally determining sensor or infrastructure placement in a fluid network, for determining an anomaly of interest in the fluid network, and for determining sensor coverage in a fluid network, which are based on a model of the fluid network represented by a directed graph.
Abstract:
A portable sensor for measuring a hydration level of an object in close physical proximity with the sensor includes a portable housing having a total volume of less than about 50 cm3. First circuitry disposed in the housing includes a thermal source, a controller electrically coupled to the thermal source, a temperature sensing element, and a processor coupled to the temperature sensing element. When the object is in close physical proximity with the sensor, the thermal source is energized by the controller with a signal having a known function of time. The object affects a time variation of a temperature of the thermal source, the temperature sensing element senses the affected time variation of the temperature of the thermal source, and the processor determines a hydration level of the object based on a characteristic of the affected time variation of the temperature of the thermal source.
Abstract:
At least some aspects of the present disclosure feature an RF device including a conductive loop and a plurality of resonant circuits. Each of the plurality of resonant circuits is electromagnetically coupled to the conductive loop with an effective coupling coefficient. The effective coupling coefficient has a relative low absolute value such that each of the plurality of resonant circuits has a distinctive resonant frequency.