Abstract:
A pressure vessel for storage and transportation of CNG comprises a body, which defines an internal volume in which the CNG is stored and transported. An inlet is provided through which the CNG can be loaded into the internal volume of the vessel. At the end of said inlet there is a CNG expansion section through which the CNG expands into the vessel when loaded. The pressure vessel further comprises a CNG loading appendage for injecting the CNG at a point inside the internal volume of the vessel, thereby increasing the space between the expansion point of the CNG and the walls of the vessel.
Abstract:
A pressure vessel is produced for storing and transporting CNG. The vessel comprises a body defining an internal volume in which the CNG can be stored, and an inlet for loading the CNG into the vessel. The body of the vessel comprises a structural shell made entirely of a fibre-reinforced fibre-wound composite material, which is provided with fibres to carry mechanical loads and a matrix to keep the fibres together and to make the composite impermeable to the CNG. Because the vessel is not provided with any liner, the CNG is in direct contact with an inner side of the structural shell.
Abstract:
A pressure vessel for containment of CNG comprises a cylindrical body enclosed between two end domes. The cylindrical body and the domes define a convex volume and surface for accommodating the CNG. The cylindrical body has a diameter, and a length. Each of the domes has a base diameter matching the diameter of the cylinder, and an axial height. The overall length of the pressure vessel is defined by the axial length of the cylindrical body and the axial heights of the domes. The ratio between the length of the pressure vessel and the diameter of the cylindrical body is comprised in the range between one and two, or equal to one or two, so that the resulting pressure vessel looks compact, and has a good proportion of internal volume per unit surface.
Abstract:
A pressure vessel is produced for storing and transporting CNG. The vessel comprises a body defining an internal volume in which the CNG can be stored, and an inlet for loading the CNG into the vessel. The body of the vessel comprises a structural shell made entirely of a fibre-reinforced fibre-wound composite material, which is provided with fibres to carry mechanical loads and a matrix to keep the fibres together and to make the composite impermeable to the CNG. Because the vessel is not provided with any liner, the CNG is in direct contact with an inner side of the structural shell.
Abstract:
A method of producing a pressure vessel, and the corresponding pressure vessel, wherein the pressure vessel is comprised of different types of structural elements, one of the structural elements being comprised of a metal substrate having a liner material adhering to the substrate in adjoining linear areas; and orientated so that adjoining linear areas of lining material are orientated longitudinally with respect to a completed pressure vessel.
Abstract:
The present invention is directed to a pressure vessel comprising a conductive composite boss wherein the composite boss is isolated from contact with materials with different electrical potentials so as to substantially eliminate the possibility of galvanic corrosion.
Abstract:
The present invention relates to a fire resistant pressure vessel in which the inclusion of fire resistance does add appreciably to the overall weight of the vessel over a similar vessel that is not fire resistant.
Abstract:
A ship comprising a plurality of pressure vessels, there being a first set of pressure vessels of a first length, a second set of pressure vessels of a second length, and a third set of pressure vessels of a third length, the first, second and third lengths differing from one another. The vessels are typically arranged vertically, and the ship can be a multi-hull ship.
Abstract:
A pressure vessel for storage and transportation of CNG comprises a body, which defines an internal volume in which the CNG is stored and transported. An inlet is provided through which the CNG can be loaded into the internal volume of the vessel. At the end of said inlet there is a CNG expansion section through which the CNG expands into the vessel when loaded. The pressure vessel further comprises a CNG loading appendage for injecting the CNG at a point inside the internal volume of the vessel, thereby increasing the space between the expansion point of the CNG and the walls of the vessel.