Abstract:
Systems and methods provide resource allocation signaling for low cost machine type communication (LC-MTC) devices with the elimination of the physical downlink control channel (PDCCH) in long term evolution (LTE) communication systems. Disclosed systems and methods provide alternative light-weight, efficient control signaling for resource allocation of LC-MTC devices.
Abstract:
Embodiments of the present disclosure describe systems and methods for operation of an evolved node B to provide multiple coverage enhancement levels. Various embodiments may include an operational mode configured to provide a first coverage enhancement level associated with user equipments (UEs) that have established communication with the eNB. These embodiments may also include a discovery mode configured to operate at a second coverage enhancement level to discover UEs configured for a higher coverage enhancement level. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of an enhanced Node B (eNB) and method to provide system information (SI) updates to user equipment (UE) in sleep or idle mode with an extending paging cycle are generally described herein. In some embodiments, a paging message configured to include an optional field to indicate whether there has been a system information (SI) update since a last paging occasion for a UE in sleep or idle mode with an extending paging cycle. System information updates are transmitted by the eNB during a system information modification period that is shorter than a period the extending paging cycle. The optional field may indicate whether or not the UE is to acquire the latest SI update during the current paging occasion.
Abstract:
Technology for communicating user equipment (UE) power consumption configurations is disclosed. One method can include selecting, at the UE, a Power Preference Indication (PPI) state of a power consumption configuration of the UE. The UE can receive, from a source evolved node B (eNB), instructions to begin a PPI Prohibit Event Interval during a handover from the source eNB to a target eNB, wherein the UE cannot send the PPI state to the source eNB during the PPI Prohibit Event Interval. The UE can send the PPI state to the target eNB after the PPI Prohibit Event Interval ends and handover has either successfully completed or failed from the source eNB to the target eNB.
Abstract:
Embodiments of a system and method to identify and differentiate background traffic are generally described herein. In some embodiments, a transceiver is arranged to wirelessly transmit and receive packets over a communications network and a processor, coupled to the transceiver, is arranged to provide an indication identifying packets associated with background traffic. The indication identifying packets associated with background traffic includes a bit in a header of a packet, wherein the bit is set in a first state to indicate the packet is associated with background traffic and the bit is set in a second state to indicate the packet is associated with active traffic, or an identification of a port number and a protocol type associated with background traffic. The processor is further arranged to provide an indication for differentiating background traffic.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and a plurality of evolved Node Bs (“eNBs”). A UE may be adapted to operate in a dual connectivity mode on respective wireless cells provided by first and second eNBs. The UE may communicate with a first eNB in a first frequency band. The UE may communicate with a second eNB in a second frequency band. The first eNB may detect that the second frequency band is unavailable. Based on this detection, the first eNB may notify the UE that communication in the second frequency band is no longer available. In response, the UE may control a radio to cease communication in the second frequency band. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for managing communications in a radio access network. An apparatus may include computer-readable media having instructions and one or more processors coupled with the computer-readable media and configured to execute the instructions to measure flow context information based on data extracted from an internet protocol (IP) data flow between a user equipment (UE) and a network entity, and provide the measured flow context information to the UE to facilitate management of one or more IP data flows by the UE. The management of the IP data flow may include selecting a radio access network from one or more radio access networks available for communicating the IP data flow between the UE and the network entity, based at least in part on the provided flow context information. Other embodiments may be described and/or claimed.
Abstract:
Technology for communicating power preference indication (PPI) message is described. A user equipment (UE) may receive PPI configuration information, from an evolved node B (eNB), wherein the PPI configuration information includes a predetermined threshold for a number of PPI messages that the UE can communicate to the eNB during a defined time window. The UE may communicate a plurality of PPI messages after sending a low power consumption configuration to the eNB during the defined time window, wherein the plurality of PPI messages each indicate a change in preferred power consumption configuration. The UE may detect that the plurality of PPI messages exceeds the predetermined threshold for the number of PPI messages that the UE can communicate to the eNB during the defined time window as defined in the PPI configuration information. The UE may initiate a threshold timer in response to the plurality of PPI messages exceeding the predetermined threshold to restrict additional PPI messages from being communicated to the eNB until expiration of the threshold timer.
Abstract:
Technology for communicating a discontinuous reception (DRX) reconfiguration is disclosed. In one method, a preferred power consumption configuration message is received, at an evolved node B (eNB) from a user equipment. The preferred power consumption configuration message may be a one-bit message using a first Boolean value to indicate a preferred power consumption configuration. A DRX reconfiguration request message may be received, from the UE, to reconfigure a DRX configuration of the UE to reduce a power consumption level of the UE. The DRX reconfiguration request message may be the one-bit message using a second Boolean value to indicate a DRX reconfiguration. The eNB may determine to reconfigure the DRX configuration of the UE based on the DRX reconfiguration request message. In addition, the eNB may perform the DRX reconfiguration at the UE by adjusting one or more parameters of the DRX configuration.
Abstract:
Technology for communicating user equipment (UE) power consumption configurations is disclosed. One method can include selecting, at the UE, a Power Preference Indication (PPI) state of a power consumption configuration of the UE. The UE can receive, from a source evolved node B (eNB), instructions to begin a PPI Prohibit Event Interval during a handover from the source eNB to a target eNB, wherein the UE cannot send the PPI state to the source eNB during the PPI Prohibit Event Interval. The UE can send the PPI state to the target eNB after the PPI Prohibit Event Interval ends and handover has either successfully completed or failed from the source eNB to the target eNB.