Abstract:
A communication device converts a bit stream to multiple symbols and provides encryption at a physical layer by shifting a phase of each symbol of the multiple symbols to produce multiple encrypted symbols. Each encrypted symbol of the multiple encrypted symbols is modulated with an orthogonal subcarrier to produce at least one modulated subcarrier and the at least one modulated subcarrier is then transmitted via a wireless link. On a receive side, a receiving communication device receives the transmitted, encrypted symbols and provides decryption at a physical layer by shifting a phase of each encrypted symbol in correspondence with the phase used to encrypt the symbol at the transmit side.
Abstract:
Portions of transmitted messages, such as a portion of a service option field, can include a coded representation. The coded representation can correlate to previously stored information as retained at a receiving unit. Upon receiving the coded representation, the receiving unit can use it to access a specific item of previously stored information and then use that information. For example, a previously stored text message can be displayed and/or special annunciation tones can be used to signify specific events, such as the initiation of an interconnect or dispatch call type prior to actual complete initiation of such a call. In one embodiment, a relative station of transmission as corresponds to the coded representation can also be used to further aid in correlating the coded representation to a specific item of information.
Abstract:
The embodiments disclosed provide a manner of transmitting voice information that strikes an improved balance between voice quality and RF capacity in a CDMA dispatch environment. In general, two half-rate vocoder frames ( 201 and 202 ) are assembled into a single full rate transmit frame ( 200 ) to enable the transmission of alternating full-rate frames. Additionally, an individual CRC ( 203 and 204 ) is provided for each half-rate frame within the transmit frame to allow for partial recovery when frame corruption or erasure occurs. In this manner, system capacity is improved, particularly in the CDMA dispatch environment, while preserving voice quality.
Abstract:
To address the need for reducing call setup time without degrading the originator's service, a RAN (103) transmits a channel assignment message in a paging slot monitored by a target unit (113). The target unit responds to th is channel assignment page indicating its availability and location within the RAN coverage area. The RAN then indicates the availability of the target uni t to the calling unit (120) that originated the service request. In this way, the originator is able to proceed with the communication service, while the target completes its call setup.
Abstract:
Retransmissions of NAK'd frames takes place utilizing a retransmission channel (103-105). In particular, NAK'd frames are retransmitted to requesting remote units (113-115) on a channel (103-105) differing from the channel (109) in which they were originally broadcast to the remote units (113-115). Because retransmission of poorly-received frames occurs utilizing a channel that differs from the downlink multicast channel, the downlink transmission rate of the downlink channel is not reduced when retransmission needs to take place. This greatly improves data transmission to those units not requesting retransmission of data.
Abstract:
Each frame (500) being transmitted and received contains two frame sequence numbers. The first frame sequence number (501) comprises the sequence number of the frame being transmitted, while the second frame sequence number (502) comprises the sequence number of the next expected frame being received by the transmitter. Because each frame (500) contains a sequence number for the next expected data frame (502), transmitting circuitry (301, 302) will more quickly realize if a particular frame has not been received by the receiver. This reduces the number of idle frames needed to be transmitted at the end of the data session.
Abstract:
An apparatus and method for optimizing the transition of a Mobile Station (MS) between states of operation for packet data service. An RF connection is established between the MS and Base Site Equipment (BS) for the transmission of data packets. After a period of inactivity of transmission, the RF connection is released and the BS provides the MS with the equipment identifier of the network element that will maintain the connection with a PDSN. The MS retains the identifier while in the Dormant state and a new Semi-Dormant state and sends the identifier to the BS when requesting reactivation. In the Dormant state, the network element maintaining the connection to the PDSN is the PCF. In the Semi-Dormant state, the network element maintains the connection between to the PDSN is the SDU. When the BS has data to transmit to a MS in the Semi-Dormant state, it channel assigns the MS into the Active state according to pilots reported in RF Measurement Report Messages previously received from the MS.
Abstract:
A packet data communication system that includes a mobile station having a jitter buffer and a wireless infrastructure having a base site serving the mobile station controls a size or dept of the jitter buffer. The size or depth is controlled based on a number of retransmissions of erroneously received data employed by the system, a radio frequency load of the base site, and a round trip time period for acknowledgments and corresponding retransmissions. The jitter buffer size may be further controlled by use of a supplemental channel to expedite the transmission of data and thereby fill up the jitter buffer more quickly and by reduction of a waiting period for retransmission of the acknowledgments, thereby reducing the round trip time period.
Abstract:
During the course of a push-to-talk talkgroup wireless communication, decisions (21) are made regarding possible subsequent push-to-talk communication needs for the group. Based at least in part upon such decisions, a network location is identified (22) to provide talker arbitration support for this talkgroup. In one embodiment the identified network location can comprise a mobile station, such as a mobile station that comprises a member of the talkgroup. In a preferred embodiment, the talker arbitration capability is then assigned (24) to the identified network location.