Abstract:
The present disclosure relates to systems and methods for transmitting data over a wireless channel from a data transmitting node to a data receiving node in a communication system. In particular, the data transmitting node comprises second-layer processing circuitry for receiving, from a third layer, at least one second-layer service data unit, SDU, to be mapped onto a resource allocated for data transmission, and for generating a second-layer protocol data unit, PDU, including said at least one second-layer SDU and at least one second-layer control element, the at least one second-layer control element placed after any of the at least one second-layer SDU, and first-layer processing circuitry for receiving the second-layer PDU generated by the second-layer processing circuitry and mapping the second-layer PDU onto the resource allocated for data transmission. The data receiving node comprises first-layer processing circuitry for de-mapping at least one second-layer protocol data unit, PDU, from a resource allocated for data reception, and a second layer processing circuitry for receiving and parsing the second-layer PDU de-mapped by the first-layer processing circuitry, the second-layer PDU including at least one second-layer service data unit, SDU, and at least one second-layer control element, the at least one second-layer control element following any of the at least one second-layer SDU.
Abstract:
The invention relates to transmission and reception of data in a wireless communication system. In particular, the predetermined number of repetitions of the same data portion is transmitted over the wireless interface. The receiving device receives the repetitions, attempts their decoding and checks whether the decoding was successful. If the decoding was successful after the predetermined number of repetitions or less, a positive acknowledgement is generated. In addition, a feedback including a bundle size information is generated and transmitted. The bundle size information includes a number of repetitions, smaller or equal to the predetermined number, after which the decoding was successful. The feedback is transmitted to the data transmitting device which may adapt the predetermined number of repetitions accordingly. The invention enables efficient control of the number of repetitions applied which is particularly advantageous for coverage enhancement purposes.
Abstract:
The invention relates to a method for efficiently performing power control in situations where the UE is connected to both a MeNB and SeNB. The MeNB determines a power distribution ratio for the power to be used by the UE for uplink transmission to the MeNB and SeNB, determines the parameters P EMAX,MeNB and P EMAX,SeNB and sends these parameters to the SeNB/UE for use in power control. Moreover, update of the power distribution ratio is performed by the MeNB with assistance by the UE, which provides the MeNB with information on the pathloss on the secondary radio link to the SeNB, preferably by transmitting a virtual power headroom report, regarding the secondary radio link to the SeNB, to the MeNB, from which the MeNB derives the information on the pathloss for the secondary radio link.
Abstract:
The present invention mainly relates to improvements for the buffer status reporting and the logical channel prioritization procedures performed in the UE, in scenarios where the UE is in dual connectivity and the PDCP layer of the UE is shared in the uplink for MeNB and SeNB. According to the invention, a ratio is introduced according to which the buffer values for the PDCP are split in the UE between the SeNB and the MeNB according to said ratio.
Abstract:
Provided are wireless communication methods, an eNB and a UE. A wireless communication method with coverage enhancement performed by an eNB comprises transmitting one or more MAC RARs to one or more UEs in response to receiving one or more random access preambles (RA-preambles) from the one or more UEs, wherein the transmitting is able to be performed by a first manner in which the MAC RAR(s) in response to the RA-preamble(s) belonging to one RA-preamble set corresponding to one CE level are carried by a PDSCH which is scheduled by a first PDCCH scrambled by a set-specific RNTI, and the set-specific RNTI is related to the set index of the one RA-preamble set.