Abstract:
An embodiment of the present invention is a modified inverted-F antenna for wireless communication. The antenna circuit includes a dielectric substrate having a first surface, a radiating stub on the first surface of the dielectric substrate, and a first ground plate on the first surface of the dielectric substrate to couple to ground. The first ground plate includes one or more grounded capacitive stubs spaced apart from the radiating stub. The one or more grounded capacitive stubs tune performance parameters for the antenna circuit.
Abstract:
Brevemente, de acuerdo con una modalidad, se proporciona un método para transmitir señales. Las formas de onda de señal se transmiten desde por lo menos dos sectores respectivos. Por lo menos dos sectores respectivos provienen de por lo menos dos conjuntos diferentes de un súper conjunto de sectores. Las formas de onda de señal transmitidas incluyen formas de onda de señal por lo menos casi mutuamente ortogonales, por lo menos a lo largo de una dimensión de señal particular. Por ejemplo, una ventaja de tal modalidad se reduce a la interferencia de señal.
Abstract:
A method for combining signals coming from multiple diversity sources may include performing maximal-ratio combining (MRC) based equalization and combining for receiver antenna diversity. The method may also include performing MRC-based equalization and combining for repetition diversity. The method may also include performing MRC-based equalization and combining for duplication diversity. The MRC-based equalization and combining for receiver antenna diversity, the MRC-based equalization and combining for repetition diversity, and the MRC-based equalization and combining for duplication diversity may each be performed separately.
Abstract:
Certain embodiments utilize raw signals to estimate channel quality, as contrasted to utilizing equalized signals or after channel estimation. For example, signal quality may be estimated by calculating powers of pilot sub-carriers and null sub-carriers of the raw signals. To mitigate channel effect, certain embodiments utilize first and/or second order differentiation schemes.
Abstract:
In accordance with a method for identifying a preamble sequence and for estimating an integer carrier frequency offset, a signal that comprises a preamble sequence from a set of possible preamble sequences is received. A reduced set of integer carrier frequency offset (CFO) candidates may be determined. Cross-correlation operations may be performed with respect to the received signal and multiple candidate transmitted signals. Each candidate transmitted signal may include one of the set of possible preamble sequences. In addition, each candidate transmitted signal may correspond to one of the reduced set of integer CFO candidates. Multiple correlation values may be determined as a result of the cross-correlation operations. The correlation values may be used to identify the preamble sequence and to estimate the integer CFO.
Abstract:
Briefly, in accordance with one embodiment, a method of transmitting sign als is provided. Signal waveforms are transmitted from at least two respecti ve sectors. The at least two respective sectors are from at least two differ ent sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a partic ular signal dimension. An advantage of such an embodiment, for example, is r educed signal interference.
Abstract:
The present disclosure includes techniques to process signals in a communication system, in which multiple signal processing units process signals received from multiple antennae. The signal processor units are controlled by operational-mode control signals, which are generated using an estimated Carrier-to-Interference-Noise-Ratio (CINR). The estimated CINR is generated using an equalized and combined signal, which is generated from the received signals and the estimated channel responses using the processed signals according to an operational mode. In another embodiment, a controller generates sub-carrier allocation signals using an allocation base. A channel status information (CSI) and multiple-input-multiple-output (MIMO) controller generates sub-carrier CSI signals and operational-mode control signals using the sub-carrier allocation signals, estimated channel responses, and estimated CINR. The operational-mode control signals select one of multiple antenna paths. A transmitter-diversity processor generates transmitter-diversity signals as a function of at least a mapped signal, sub-carrier CSI signals, and operational mode control signals.
Abstract:
Certain embodiments of the present disclosure provide techniques for channel estimation without resorting to the channel second-order statistics. Methods and systems are proposed for improving the performance of an un-constrained least squares channel interpolator by using available side information of the channel, such as signal-to-noise ratio (SNR), Doppler frequency and/or delay spread.
Abstract:
An embodiment of the present invention is a modified inverted-F antenna for wireless communication. The antenna circuit includes a dielectric substrate having a first surface, a radiating stub on the first surface of the dielectric substrate, and a first ground plate on the first surface of the dielectric substrate to couple to ground. The first ground plate includes one or more grounded capacitive stubs spaced apart from the radiating stub. The one or more grounded capacitive stubs tune performance parameters for the antenna circuit.
Abstract:
An embodiment of the present invention is a technique to process signals in a communication system. In one embodiment, a plurality of signal processing units processes signals received from a plurality of antennae. The signal processor units are controlled by operational mode control signals. A channel estimator estimates channel responses using the processed signals according to an operational mode. An equalizer and combiner generates an equalized and combined signal using the received signals and the estimated channel responses. A Carrier to Interference Noise Ratio (CINR) estimator estimates CINR from the equalized and combined signal. The estimated CINR is used to generate the operational mode control signals. In another embodiment, a sub-carrier allocation controller generates sub-carrier allocation signals using an allocation base. A channel status information (CSI) and multiple input multiple output (MIMO) controller generates sub-carrier CSI signals and operational mode control signals using the sub-carrier allocation signals, estimated channel responses provided by a channel estimator, and an estimated CINR provided by an CINR estimator. The operational mode control signals select one of a plurality of antenna paths associated with a plurality of antennae. A transmitter diversity processor generates transmitter diversity signals as a function of at least a mapped signal Mk, the sub-carrier CSI signals, and the operational mode control signals.