Abstract:
The use of multiple states of mobile communication device (14) operation to allow a single base station (12) to support a relatively large number of mobile nodes (14, 16) is described. The various states require different amounts of communications resources, e.g., bandwidth. Four supported states of operation are a on-state (404), a hold-state (410), a sleep-state (408), and an access-state (402). Each mobile node in the on-state (404) is allocated communication resources to perform transmission power control signaling, transmission timing control signaling and to transmit data as part of a data uplink communications operation. Each mobile node in the hold-state (410) is allocated communication resources to perform transmission timing control signaling and is provided a dedicated uplink for requesting a state transition and a shared resource for transmitting acknowledgements. In the sleep state (408) a mobile node is allocated minimal resources and does not conduct power control signaling or timing control signaling.
Abstract:
Methods of using superposition coding in a communications systems, e.g., a multi-user communications system. Superpostion coding in accordance with the invention occurs in the case of an uplink (1212, 1216) by transmissions of different wireless terminals (1204, 1206) transmitting using the same communications resource, e.g., simultaneously transmitting using the same frequencies. The signals combine in the communications channel resulting in one transmission being superimposed on the other transmission. The device, e.g., base station (1207), receiving the superimposed signals uses superposition decoding techniques to recover both signals. To obtain the benefit of the superposition, assignments of channel segments to multiple wireless terminals is controlled by the base station and/or transmission power levels are controlled by on or more wireless terminals sharing the same uplink communications resource, e.g., time slot, to make sure that the received signals from the different devices will have different received power levels making superposition decoding possible.
Abstract:
Methods and apparatus for generating and transmitting frequency division multiplexed signals are described. The methods are well suited for use where a device uses a small subset, M, of a larger set of N subcarrier frequencies at any given time. Each transmitted FDM signal is generated by combining a plurality of individual analog subcarrier signals whose frequency may change, e.g., be hopped as a function of time. Each generated analog subcarrier signal is amplified, e.g., power amplified, and filtered prior to being combined with other analog subcarrier signals. Filters are used to compensate for or correct signal distortions and/or reduce interference between subcarriers. Fixed frequency filters are used in an exemplary frequency hopping OFDM system. In another embodiment, the filters are programmable and change, e.g., in terms of center frequency, to match the selected subcarrier frequency as frequency hopping occurs. The bandwidth of the programmable filters may remain constant.
Abstract:
A first wireless communications device includes a wide area network (WAN) interface and a peer to peer interface. The first device discovers the presence of a second wireless communications device via a peer discovery signal, received via its peer to peer interface. The second device has been transmitting, e.g., periodically, certain information, e.g., its location and/or shopping preferences, to a node within the WAN. The detected first signal triggers an application alert in the first device. The first device recovers past information about the second device through a second signal received via its WAN interface. The first device uses information communicated in the first signal, e.g., device identifier information, and information communicated in the second signal, e.g., past location and/or shopping information, to generate a targeted message for the second device. The first device communicates the targeted message via its peer to peer interface in a peer to peer traffic channel.
Abstract:
Methods and apparatus related to communicating advertisements and/or service announcements to devices in a communications system are described. In various embodiments mobile devices are used as mobile advertisement transmission platforms. Advertisements may be downloaded to the wireless communications device along with transmission constraints. Transmission of an advertisement is made when a transmission constraint, e.g., target audience constraint is satisfied. The wireless terminal may change its transmission frequency, coding rate and/or other transmission characteristics to satisfy a transmission constraint and/or optimize revenue. The mobile device reports advertisements transmissions to a network device, e.g., advertisement server and the owner of the device is compensated for the transmissions. Transmission constraints may involve a number of devices to be reached, the type of devices to be reached, and/or other constraints relating to the demographics of device users. Information may be obtained from peer discovery signals and used to determine if a constraint is satisfied.
Abstract:
Methods and apparatus for supporting and using multiple communications channels corresponding to different transmit technologies and/or access technologies in parallel within a cell of a wireless communications system are described. Mobile nodes support multiple technologies and can switch between the technology being used at a particular point in time, e.g., from a first channel corresponding to a first technology to a second channel corresponding to a different technology which provides better transmission characteristics, e.g., a better perceived channel quality. Mobiles maintain at least two sets of channel quality information at any one point in time. Mobiles select the better channel and communicate the channel selection to the base station or communicate channel quality information for multiple channels to the basestation and allow the base station to select the channel corresponding to the technology providing the better conditions for the mobile. Different mobiles in the same cell may support different technologies.
Abstract:
The invention describes methods and apparatus to structure the air link resources, e.g. traffic channels, into segments of different transmission segment types (516) and effectively use that novel structure. Different segment types (516) are structured to achieve different performance characteristics. The segments (516) may be aligned with different offsetting start times chosen to minimize the variation in the maximum number of segments (516) starting at any given time slot (530-542). This staggering of segment start times minimizes waste in unused assignment messages due to structural inefficiencies, and has an overall effect of balancing the traffic. Information collected on the channel quality that various user's are experiencing may be used to classify the users. Stored information on different segment types (516), each with different benefits, is used in the allocation process to effectively match classified users to well-suited segment types to increase performance, balance the system, conserve power, and satisfy the users.