Abstract:
Techniques to efficiently derive a spatial filter matrix are described. In a first scheme, a Hermitian matrix is iteratively derived based on a channel response matrix, and a matrix inversion is indirectly calculated by deriving the Hermitian matrix iteratively. The spatial filter matrix is derived based on the Hermitian matrix and the channel response matrix. In a second scheme, multiple rotations are performed to iteratively obtain first and second matrices for a pseudo-inverse matrix of the channel response matrix. The spatial filter matrix is derived based on the first and second matrices. In a third scheme, a matrix is formed based on the channel response matrix and decomposed to obtain a unitary matrix and a diagonal matrix. The spatial filter matrix is derived based on the unitary matrix, the diagonal matrix, and the channel response matrix.
Abstract:
Rate selection with margin sharing in a system with independent data stream rates is presented. Signal-to-Noise Ratio (SNR) estimates are obtained for each stream. Rates are selected for the streams based on the SNR estimates, such that at least one data stream has an SNR margin below a threshold, each remaining data stream has an SNR margin above a respective threshold, and the total SNR margin for all streams is above a total threshold. For rate selection with margin sharing with a vector-quantized rate set, SNR estimates are obtained for usable transmission channels. The total SNR margin is determined for each rate combination based on the estimates. Each rate combination is associated with a specific number of data streams to transmit, a specific rate for each data stream, and a specific overall throughput. The combination with the highest overall throughput and non-negative total SNR margin is selected.
Abstract:
A wireless communication network supports 802.11b/g and a range extension mode, which supports at least one data rate lower than the lowest data rate in 802.11b/g. A transmitting station (which may be an access point or a user terminal) includes first and second processors. The first processor performs differential modulation and spectral spreading for a first set of at least one data rate (e.g., 1 and 2 Mbps) supported by 802.11b/g. The second processor performs forward error correction (FEC) encoding, symbol mapping, and spectral spreading for a second set of at least one data rate (e.g., 250, 500, and 1000 Kbps) supported by the range extension mode. The transmitting station can send a transmission at a data rate supported by either 802.11b/g or the range extension mode, e.g., depending on the desired coverage range for the transmission. A receiving station performs the complementary processing to recover the transmission.
Abstract:
Techniques for transmitting multiple data streams to a single receiver using a single code rate and different modulation schemes are described. Channel estimates are determined for the multiple data streams and used to select a single code rate and multiple modulation schemes for the multiple data streams. The system may support a set of code rates, and each code rate may be associated with a respective set of modulation schemes that may be used with that code rate. The single code rate for all data streams is selected from among the set of supported code rates, and the modulation scheme for each data stream is selected from among the set of modulation schemes associated with the single code rate. The multiple data streams are encoded in accordance with the single code rate. Each data stream is further modulated in accordance with the modulation scheme selected for that stream.
Abstract:
Techniques for detecting and demodulating a signal/transmission are described. Signal detection is performed in multiple stages using different types of signal processing, e.g., using time-domain correlation for a first stage, frequency-domain processing for a second stage, and time-domain processing for a third stage. For the first stage, products of symbols are generated for at least two different delays, correlation between the products for each delay and known values is performed, and correlation results for all delays are combined and used to declare the presence of a signal. For demodulation, the timing of input samples is adjusted to obtain timing-adjusted samples. A frequency offset is estimated and removed from the timing-adjusted samples to obtain frequency-corrected samples, which are processed with a channel estimate to obtain detected symbols. The phases of the detected symbols are corrected to obtain phase-corrected symbols, which are demodulated, deinterleaved, and decoded.
Abstract:
Un procedimiento para comunicaciones inalámbricas, que comprende: estimar (116, 218) una relación de señal a ruido y de interferencia, SNR, para un canal de transmisión en un primer enlace de comunicación en base a una SNR estimada para un canal de transmisión en un segundo enlace de comunicación y un parámetro asimétrico, que indica una diferencia en la calidad de canal entre el primer y el segundo enlaces de comunicación, en el que la SNR estimada del segundo enlace de comunicación se calcula reduciendo una SNR promedio de un flujo de datos enviado en un canal de transmisión a través del segundo enlace de comunicación por al menos un factor de retroceso; seleccionar (118, 220) una velocidad para una transmisión de datos en el primer enlace de comunicación en base a la SNR estimada del primer enlace de comunicación; transmitir (222) un flujo de datos a la velocidad seleccionada a través del primer enlace de comunicación; recibir, a través del segundo enlace de comunicación, retroalimentación ACK/NAK para paquetes enviados en el flujo de datos transmitido; y ajustar (120, 228) el al menos un factor de retroceso en base a la retroalimentación ACK/NAK recibida.