Abstract:
통신 시스템은 양쪽 업링크(UL) 송신들이 동시에 스케쥴링될 때 ACK/NACK 및/또는 서비스 요청(SR)이 수신되었는지를 사용자 장비(UE)를 스케쥴링하는 베이스 노드(base node)가 결정할 수 있도록 멀티플렉싱 방식(scheme)을 통합한다. 베이스 노드가 ACK/NACK 또는 SR UL 채널에 의해 선택적인 사용을 해석할 수 있기 때문에, 상당한 복잡성 감소, 보다 우수한 링크 효율성, 및 보다 높은 멀티플렉싱 능력이 달성된다. 상기 해석은 다중 다운링크(DL) 송신 모드들, 특히 DL 단일 입력 다중 출력(SIMO), 랭크 1 송신에 관한 DL 다중 입력 다중 출력(MIMO), 및 랭크 2 송신에 관한 DL MIMO가 사용될 때로 확장될 수 있다. 스케쥴링 및 DL 송신 모드의 지식을 기초로, 베이스 노드는 UE로부터의 가능한 응답들의 맵핑으로 인해 다수의 가능성들을 블라인드 디코딩(blind decode) 하지 않아야 한다. 게다가, 멀티플렉싱 방식은 FDD 및 TDD에 응용할 수 있다.
Abstract:
기법들이무선통신에대해설명된다. 기지국에서의무선통신을위한하나의방법은공유라디오주파수스펙트럼대역의공유채널에의액세스를경합하는단계와, 공유채널에서제 1 성분캐리어 (CC) 통신윈도우들과제 2 CC 통신윈도우들을다중화하는단계를포함한다. 제 1 CC 통신윈도우들의직교주파수도메인다중화된 (OFDM) 심볼들의지속기간이제 2 CC 통신윈도우들의 OFDM 심볼들의지속기간과는상이할수도있고, 다중화는공유채널에의액세스를위한경합에서승리시 공유채널상에서발생할수도있다. 사용자장비 (UE) 에서의무선통신을위한하나의방법은제 1 CC LBT (Listen Before Talk) 프레임에대해공유라디오주파수스펙트럼대역의공유채널을모니터링하는단계와, 제 2 CC 프리앰블에서, 제 1 CC LBT 프레임의표시를수신하는단계를포함한다.
Abstract translation:描述了用于无线通信的技术。 一种用于基站处的无线通信的方法包括:竞争对共享无线电频谱频带的共享信道的接入,以及在共享信道中复用第一分量载波(CC)通信窗口和第二CC通信窗口。 第一CC通信窗口的正交频域复用(OFDM)符号的持续时间可以不同于第二CC通信窗口的OFDM符号的持续时间,并且复用可以在赢得对共享的访问争用时发生在共享信道上 渠道。 一种用于用户设备(UE)处的无线通信的方法包括监测共享无线电频谱频带的共享信道以用于第一CC通话之前(LBT)帧,并且在第二CC前导码中接收第一CC CC LBT帧。
Abstract:
PROBLEM TO BE SOLVED: To provide an inter-system handover system that efficiently supports hand-down and hand-up to different radio access technologies.SOLUTION: Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about a neighboring system (target) when a UE 12 reception (RX) capability is both inside and outside a reception range of the neighboring system. A optimized list of neighboring RAT systems (targets) are broadcast from a network, including measurement parameters and reporting instructions. Thereby, reporting driven by the UE 12 minimizes the latency. The UE 12 reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other system measurement information, if necessary, for additional efficiency.
Abstract:
PROBLEM TO BE SOLVED: To provide a system and method for hybrid FDM (frequency division multiplexing)-CDM (code division multiplexing) structure in order to utilize the entire bandwidth.SOLUTION: The hybrid FDM-CDM structure maximizes frequency diversity over the entire available bandwidth such that orthogonality between signals from users in a given cell is maintained. Thus, users in the given cell can transmit over a non-contiguous set of tones. Furthermore, the hybrid FDM-CDM structure maintains orthogonality of a pilot of users in different cells on the basis of a despreading operation in the time domain.
Abstract:
PROBLEM TO BE SOLVED: To provide systems and methodologies that facilitate optimal transmission of system parameter data in a wireless communication system.SOLUTION: Data is classified by determining whether the data is one of static, semi-static, and dynamic in nature. A broadcast channel is split into at least two portions. One portion allows transmission of static system parameter data at a first data rate, and a second portion allows transmission of semi-static or dynamic parameter data at a second disparate data rate.
Abstract:
PROBLEM TO BE SOLVED: To provide techniques for transmitting data and pilot for control information.SOLUTION: User equipment (UE) spreads a reference signal sequence with a first orthogonal sequence to obtain multiple pilot sequences. The UE then sends the multiple pilot sequences on multiple subcarriers in multiple symbol periods, one pilot sequence in each symbol period. The UE modulates the reference signal sequence with control information (e.g., ACK information) to obtain a modulated sequence. The UE spreads the reference signal sequence with a second orthogonal sequence to obtain multiple data sequences. The UE then sends the multiple data sequences on the multiple subcarriers in multiple symbol periods for data. The UE sends multiple pilot sequences on multiple subcarriers in multiple symbol periods separated by at least one symbol period.