Abstract:
Methods and apparatuses for the processing of false alarms in position determination. At least one embodiment of the present invention estimates and uses measurement false alarm probabilities in the position determination process. In one embodiment, the estimated measurement false alarm probabilities are combined to determine the reliability of the determined position solution or the reliability of the set of measurements as a collection. In one embodiment, the estimated measurement false alarm probabilities are used in the isolation and elimination of faulty measurements. For example, the traditional geometry based metric for identifying a faulty measurement is further weighted according to the measurement false alarm probabilities in order to determine the faulty measurement.
Abstract:
A method of signal reception according to one embodiment of the invention includes compensating for an estimated or measured Doppler shift during integration of a correlated signal. Such a method also includes determining a composite peak position of peak profile p (t) and correcting this position based on the compensation.
Abstract:
Techniques to detect whether or not a remote terminal is under the coverage of a repeater within a wireless communication network, which may be based on (1) a list of base stations expected to be received while under the repeater's coverage, (2) the characterized environment of the repeater, and/or (3) the propagation delays for a transmission received at the remote terminal. Additional ambiguity resulting from being under a repeater's coverage may also be accounted for and/or compensated by (1) discarding time measurements from repeated base stations, (2) adjusting the processing for position estimation to account for the additional ambiguity due to the repeater, (3) computing a series of position estimates based on multiple transmissions received from the same originating base station and selecting the best estimate, and/or (4) computing a series of position estimates based on multiple transmissions from multiple originating base stations and selecting the best estimate.
Abstract:
A novel and improved method and apparatus for searching is described. This searcher combines the ability to search multiple offsets of single pilots, such as those found in the IS-95 system, with the ability to search multiple pilots, such as those found in a GPS location determination system. Both types of searching can be done in a single architecture combining the parallel computation features of a matched filter with the flexibility of allowing a variable number of non-coherant accumulations to be performed at high speed for a wide range of search hypotheses in a resource efficient manner. This invention allows for parallel use of the matched filter structure in a time-sliced manner to search multiple windows. In addition, the searcher allows for optional independent Walsh decovering for each search window. The time-sharing approach allows for optional frequency searching of any offset.