Abstract:
A method for determining uplink channel information includes sending a trigger frame from an access point of a wireless network to a plurality of stations in the wireless network. The method also includes receiving an uplink transmission from at least one station of the plurality of stations in response to sending the trigger frame. The method further includes determining uplink channel data based on the uplink transmission. The method also includes sending the uplink channel data to the at least one station. The uplink channel data is usable by the at least one station to send data to the access point.
Abstract:
A method for sending data includes receiving, at a first station of a plurality of stations, a trigger frame from an access point of a wireless network. The method also includes determining a downlink channel estimation based on the trigger frame and sending the downlink channel estimation to the access point. The method further includes receiving uplink channel data from the access point in response to sending the downlink channel estimation. The method also includes sending data to the access point based on the uplink channel data.
Abstract:
Methods, systems, and devices are described for saving power in wireless communications. One aspect includes providing an indication of a sleep duration for transmission to a wireless node, communicating with the wireless node during a target wakeup time (TWT), wherein the communication comprises at least one of providing data for transmission to the wireless node or obtaining data received from the wireless node, and refraining from providing data for transmission to the wireless node for at least the indicated sleep duration based at least in part on timing of the communication. Another aspect includes receiving an indication of a sleep duration from a wireless node, communicating with the wireless node during a time slot of a TWT, and entering a sleep mode for the indicated sleep duration based at least in part on timing of the communication with the wireless node during the time slot of the TWT.
Abstract:
Systems and methods are provided for preferentially locating a candidate channel likely to have an active network during a WLAN scanning process of an increased bandwidth. The candidate channel may be detected using spectral analysis of a received signal that may involve any combination FFT captures and correlation operations associated with detecting packets. Upon identification of a candidate channel, a wireless communications device may switch to that channel to receive and process one or more packets to determine the existence of a BSS available for association.
Abstract:
Systems and methods for calculating round trip time (RTT) between two wireless devices with respective clock drifts, while lowering the impact of the clock drifts on the RTT. A first RTT in a first direction is determined between a first wireless device and a second wireless device based on a first set of one or more messages exchanged between the first wireless device and the second wireless device. A second RTT in a second direction is determined between the second wireless device and the first wireless device based on a second set of one or more messages exchanged between the second wireless device and the first wireless device, and an average RTT of the first RTT and the second RTT is computed, wherein the average RTT has a low impact of the clock drifts.
Abstract:
A method of providing aggregated MAC protocol data unit (AMPDU) duration control in a wireless communication device includes setting an AMPDU duration. Pass/fail statistics are collected for each MPDU of an AMPDU in a time window, W. A packet error rate (PER) difference is calculated between first and last sets of MPDUs for each AMPDU in the window. An average PER difference is calculated across all AMPDUs in the window. When the average PER difference is greater than a first threshold, then the AMPDU duration is decreased. When the difference is less than a second threshold, then the AMPDU duration is increased. When the difference is within the first and the second thresholds, then the method returns to the step of collecting for a next time window. The AMPDU duration can also be adjusted based on detected Doppler and line-of-sight transmissions.
Abstract:
A method of performing transmission from an access point (AP) in a wireless communication system provides transmission setting adjustment after sounding. In this method, stations associated with the AP and having transmission data can be identified. Transmission to those stations can be performed using a predetermined transmission setting. For a first transmission after a sounding, the predetermined transmission setting can be boosted. For any transmission other than the first transmission after the sounding, a current or adjusted transmission setting can be used based on a detected PER during transmission. An adjusted transmission setting can be an MCS rate, a user-level (SU-BF, 2U-MIMO, or 3U-MIMO), or aggregated MAC protocol data unit (AMPDU) aggregation level. A single transmission setting or a combination of settings can be used. The method can be used with any transmission setting(s), including those mapped from the Signal to Interference and Noise Ratio (SINR).
Abstract:
A fast diversity technique using either an EESM or a capacity computation can determine antenna selection in a wireless communication device. A fast Fourier transform (FFT) for the EESM/ capacity computation can be performed with consecutive samples of a single symbol period of a short training field (STF) of a packet received by each antenna (304,306). The effective signal-to-noise ratio (SNR) for each antenna can be calculated using the results of the EESM or capacity computation (307). The antenna with the highest effective SNR is selected (308).
Abstract:
Transmitting beamforming can steer a transmitting signal to reduce the interference between spaces of a MIMO system and achieves constructive combination at the receiver. One method of steering matrix calculation includes using singular value decomposition (SVD). Notably, the singular values of SVD, which represent the stream strengths in a MIMO system, are in descending order. In equal modulation, signal strength degradation makes the receive EVM of the latest stream poor and increases the probability of packet error. MMSE can be used to weight the steering vectors of the steering matrix calculated in SVD. This weighting of the singular values can balance the SNR of the streams, thereby improving packet error rate.
Abstract:
A method and apparatus for improving the accuracy of a round trip time (RTT) estimate between a first device and a second device are disclosed. The method involves calculating an acknowledgement correction factor and a unicast correction factor. These correction factors are used to compensate for symbol boundary time errors resulting from multipath effects.