Abstract:
This disclosure provides methods, devices and systems for clear channel assessment (CCA). In one aspect a device performs a first clear channel assessment (CCA) check on a primary subchannel of a channel having a total bandwidth greater than or equal to 40 megahertz (MHz), a plurality of subchannels of the channel collectively spanning the total bandwidth of the channel, the plurality of subchannels including the primary subchannel and one or more secondary subchannels, the primary subchannel and the one or more secondary subchannels each having a bandwidth of 20 MHz, performs, on each of the one or more secondary subchannels, a respective second CCA check, and transmits a communication on the channel based on a status of each of the primary subchannel and the one or more secondary subchannels that is based on the performance of the respective second CCA check or the first CCA check.
Abstract:
This disclosure provides methods, devices and systems for acknowledgement and retransmission, and more specifically, to methods, devices and systems that enable a secondary wireless channel to provide acknowledgements of data transmitted on a primary wireless channel concurrently with the reception of additional data on the primary wireless channel. In some implementations, a transmitting device may transmit wireless packets including multiple codewords to a receiving device via a first wireless channel. The receiving device may attempt to decode the received codewords based on primary information in the codewords. The receiving device may then transmit to the transmitting device, via a second wireless channel, a codeword acknowledgement that identifies codewords that the receiving device did not successfully decode. The transmitting device may then transmit parity information to the receiving device via the first wireless channel that aids the receiving device in decoding the identified codewords.
Abstract:
An access point (AP) may signal management frames that include two operation information fields indicating two channel widths for different classes of wireless stations (STAs). STAs may identify one of the two operation information fields based on capabilities of the STA (e.g., whether or not the STA is capable of dual band channel bonding, resource unit or physical channel puncturing, etc.). In some cases, one operation information field may indicate a channel width within a first and second frequency band (e.g., within the 5 GHz band and the 6 GHz band), as well as a puncturing scheme associated with the channel width. In some cases, the operation information field may indicate a dual band channel bonding configuration, where two frequency segments associated with the channel bonding configuration are in two different frequency bands. In some cases, a tightened spectral mask may be used for such dual band channel bonding configurations.
Abstract:
The disclosure provides for rate adaptation based on channel power tracking in wireless communications. An Access Point (AP) may measure a full-band channel quality information (CQI) for a plurality of wireless stations associated with the AP and allocate a sub-band resource unit from the plurality of sub-band resource units to a wireless station based on the full-band CQI. Aspects of the disclosure also include techniques for adjusting a data rate associated with the wireless station based on a channel power of the sub-band resource unit.
Abstract:
A method for determining uplink channel information includes sending a trigger frame from an access point of a wireless network to a plurality of stations in the wireless network. The method also includes receiving an uplink transmission from at least one station of the plurality of stations in response to sending the trigger frame. The method further includes determining uplink channel data based on the uplink transmission. The method also includes sending the uplink channel data to the at least one station. The uplink channel data is usable by the at least one station to send data to the access point.
Abstract:
A method for sending data includes receiving, at a first station of a plurality of stations, a trigger frame from an access point of a wireless network. The method also includes determining a downlink channel estimation based on the trigger frame and sending the downlink channel estimation to the access point. The method further includes receiving uplink channel data from the access point in response to sending the downlink channel estimation. The method also includes sending data to the access point based on the uplink channel data.
Abstract:
A wireless device may selectively add padding to an end of a data transmission in order to provide adequate time for a receiving device to process the transmitted data and transmit feedback related to the transmitted data. A wireless device may identify a total amount of data capable of being transmitted in a transmission, and determine a number of data bits to be transmitted in the transmission. An amount of padding may be selected based on a proportion of the total amount of data capable of being transmitted and the number of data bits. In some examples, a preamble for a feedback transmission may be transmitted concurrently with processing of the received transmission.
Abstract:
Certain aspects of the present disclosure generally relate to wireless communications and, more particularly, to Wi-Fi systems including frame extensions in transmission frames. Lengths of frame extensions may be determined based on transmission bandwidths and transmission data rates of the frames. Lengths of frame extensions may also be determined based on an amount of useful data in a final symbol of the frame. An access point (AP) may determine frame extension lengths for use in transmitting to stations (STAs) based on reception capabilities of the STAs. An AP may determine frame extension lengths for STAs to use in transmitting frames.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. In one aspect, the apparatus is configured to determine a number of data symbols for transmitting a data payload. The apparatus is configured to determine a number of payload bits for transmitting the data payload based on the determined number of data symbols. The apparatus is configured to transmit a data frame. The data frame includes a signal field and data symbols encoded based on the data payload, the determined number of data symbols, and the determined number of payload bits, in which the data symbols are encoded using LDPC encoding or BCC encoding.
Abstract:
Systems, methods, and devices for wireless communication are provided. In one aspect, an apparatus for wireless communication is provided. The apparatus includes a processor configured to generate a packet for transmission via a wireless signal. The packet is generated for transmission over a bandwidth of 1 MHz using at least one orthogonal frequency-division multiplexing (OFDM) symbol. The apparatus further includes a transmitter configured to transmit the packet via the wireless signal having a power spectral density. The power spectral density within ±0.45 MHz of a center frequency of the wireless signal is at a first power spectral density level. The power spectral density between 0.45 MHz and 0.6 MHz from the center frequency of the wireless signal and between -0.45 MHz and -0.6 MHz from the center frequency of the wireless signal is less than the first power spectral density level. The power spectral density between 0.6 MHz and 1 MHz from the center frequency of the wireless signal and between -0.6 MHz and -1 MHz from the center frequency of the wireless signal is less than -20 dBr with respect to the first power spectral density level. The power spectral density between 1 MHz and 1.5 MHz from the center frequency of the wireless signal and between -1 MHz and -1.5 MHz from the center frequency of the wireless signal is less than -28 dBr with respect to the first power spectral density level. The power spectral density of greater than ±1.5 MHz from the center frequency of the wireless signal is less than -40 dBr with respect to the first power spectral density level.