Abstract:
In a described example, an apparatus includes: a first mold compound partially covering a thermal pad that extends through a pre-molded package substrate formed of a first mold compound, a portion of the thermal pad exposed on a die side surface of the pre-molded package substrate, the pre-molded package substrate having a recess on the die side surface, with an exposed portion of the thermal pad and a portion of the first mold compound in a die mounting area in the recess; a semiconductor die mounted to the thermal pad and another semiconductor die mounted to the mold compound in the die mounting area; wire bonds coupling bond pads on the semiconductor dies to traces on the pre-molded package substrate; and a second mold compound over the die side surface of the pre-molded package substrate and covering the wire bonds, the semiconductor dies, the recess, and a portion of the traces.
Abstract:
An electronic device includes a multilevel package substrate with first and second levels extending in planes of first and second directions and spaced apart from one another along a third direction, the first level having a first side with landing areas spaced apart from one another along the first direction. The multilevel package substrate includes a conductive structure having first and second ends and conductive portions in the first and second levels that provide a conductive path along the first direction from the landing areas toward the second end, where the conductive structure includes indents that extend into the conductive portions in the first level, the indents spaced apart from one another along the first direction and positioned along the first direction between respective pairs of the landing areas.
Abstract:
In one instance, a semiconductor package includes a lead frame and a semiconductor die mounted to the lead frame via a plurality of bumps that are shaped or tapered. Each of the plurality of bumps includes a first end connected to the semiconductor die and an opposing, second end connected to the lead frame. The first end has an end surface area A1. The second end has an end surface area A2. The end surface area A1 of the first end is less than the end surface area A2 of the second end. Other aspects are disclosed.
Abstract:
In one instance, a semiconductor package includes a lead frame and a semiconductor die mounted to the lead frame via a plurality of bumps that are shaped or tapered. Each of the plurality of bumps includes a first end connected to the semiconductor die and an opposing, second end connected to the lead frame. The first end has an end surface area A1. The second end has an end surface area A2. The end surface area A1 of the first end is less than the end surface area A2 of the second end. Other aspects are disclosed.
Abstract:
In a described example, an apparatus includes: a first mold compound partially covering a thermal pad that extends through a pre-molded package substrate formed of a first mold compound, a portion of the thermal pad exposed on a die side surface of the pre-molded package substrate, the pre-molded package substrate having a recess on the die side surface, with an exposed portion of the thermal pad and a portion of the first mold compound in a die mounting area in the recess; a semiconductor die mounted to the thermal pad and another semiconductor die mounted to the mold compound in the die mounting area; wire bonds coupling bond pads on the semiconductor dies to traces on the pre-molded package substrate; and a second mold compound over the die side surface of the pre-molded package substrate and covering the wire bonds, the semiconductor dies, the recess, and a portion of the traces.
Abstract:
In some examples, a device comprises an electronic component having multiple electrical connectors, the multiple electrical connectors configured to couple to a printed circuit board (PCB) and having a first footprint. The device also comprises a multi-lead adapter comprising multiple rows of leads arranged in parallel, the leads in the rows configured to couple to the electrical connectors of the electronic component and having a second footprint that has a different size than the first footprint.
Abstract:
In one instance, a method of forming a semiconductor package with a leadframe includes cutting, such as with a laser, a first side of a metal strip to a depth D1 according to a cutting pattern to form a first plurality of openings, which may be curvilinear. The method further includes etching the second side of the metal strip to a depth D2 according to a photoresist pattern to form a second plurality of openings. At least some of the first plurality of openings are in fluid communication with at least some of the second plurality of openings to form a plurality of leadframe leads. The depth D1 is shallower than a height H of the metal strip, and the depth D2 is also shallower than the height H. Other embodiments are presented.
Abstract:
A method of making an electronic device having a discrete device mounted on a surface of an electronic die with both the discrete device and the die connected by heat cured conductive ink and covered with cured encapsulant including placing the discrete device on the die; and keeping the temperature of each of the discrete device and the die below about 200° C. Also disclosed is a method of electrically attaching a discrete device to a substrate that includes placing the device on the substrate, applying conductive ink that connects at least one terminal on the device to at least one contact on the substrate and curing the conductive ink. Also disclosed is an IC package with a discrete electrical device having electrical terminals; an electrical substrate having contact pads on a surface thereof; and cured conductive ink connecting at least one of the electrical terminals with at least one of the contact pads.
Abstract:
A method for fabricating a micro-electro-mechanical system (MEMS) provides a semiconductor chip having a cavity with a radiation sensor MEMS. The opening of the cavity at the chip surface is covered by a plate transmissive to the radiation sensed by the MEMS. A patterned metal film is placed across the plate surface remote from the cavity.
Abstract:
A coupling device provides galvanic isolation using a leadframe that is configured to support two integrated circuit chips in a coplanar manner. Each chip contains an inductive coupling coil. The lead frame includes a set of bond pads for attaching bond wires to couple to the two integrated circuit chips. Two separated die attach pads support the two chips. Each die attach pad is configured to support one of the two integrated circuit chips with a plurality of cantilevered fingers.