Abstract:
The invention is an plasma processing system with a plasma chamber for processing semiconductor substrates, comprising: a radio frequency or microwave power generator coupled to the plasma chamber; a low pressure vacuum system coupled to the plasma chamber; and at least one chamber surface that is configured to be exposed to a plasma, the chamber surface comprising: a YxOyFz layer that comprises Y in a range from 20 to 40%, O in a range from greater than zero to less than or equal to 60%, and F in a range of greater than zero to less than or equal to 75%. Alternatively, the YxOyFz layer can comprise Y in a range from 25 to 40%, O in a range from 40 to 55%, and F in a range of 5 to 35% or Y in a range from 25 to 40%, O in a range from 5 to 40%, and F in a range of 20 to 70%.
Abstract:
The invention is an plasma processing system with a plasma chamber for processing semiconductor substrates, comprising: a radio frequency or microwave power generator coupled to the plasma chamber; a low pressure vacuum system coupled to the plasma chamber; and at least one chamber surface that is configured to be exposed to a plasma, the chamber surface comprising: a YxOyFz layer that comprises Y in a range from 20 to 40%, O in a range from greater than zero to less than or equal to 60%, and F in a range of greater than zero to less than or equal to 75%. Alternatively, the YxOyFz layer can comprise Y in a range from 25 to 40%, O in a range from 40 to 55%, and F in a range of 5 to 35% or Y in a range from 25 to 40%, O in a range from 5 to 40%, and F in a range of 20 to 70%.
Abstract:
A processing system is disclosed, having a power transmission element with an interior cavity that propagates electromagnetic energy proximate to a continuous slit in the interior cavity. The continuous slit forms an opening between the interior cavity and a substrate processing chamber. The electromagnetic energy may generate an alternating charge in the continuous slit that enables the generation of an electric field that may propagate into the processing chamber. The electromagnetic energy may be conditioned prior to entering the interior cavity to improve uniformity or stability of the electric field. The conditioning may include, but is not limited to, phase angle, field angle, and number of feeds into the interior cavity.
Abstract:
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
Abstract:
A plasma processing apparatus includes a processing chamber having a plasma processing space therein and a substrate support in the processing chamber at a first end for supporting a substrate. A plasma source is coupled into the processing space and configured to form a plasma at a second end of the processing chamber opposite said first end. The apparatus further includes a magnetic grid having an intensity of a magnetic flux therein, a plurality of passageways penetrating from a first side to a second side, a thickness, a transparency, a passageway aspect ratio, and a position within the processing chamber between the second end and the substrate. The intensity, the thickness, the transparency, the passageway aspect ratio, and the position are configured to cause electrons having energies above an acceptable maximum level to divert from the direction. A method of obtaining low average electron energy flux onto the substrate is also provided.
Abstract:
A processing system is disclosed, having a multiple power transmission elements with an interior cavity that may be arranged around a plasma processing chamber. Each of the power transmission elements may propagates electromagnetic energy that may be used to generate plasma within the plasma process chamber. The power transmission elements may be designed to accommodate a range of power and frequency ranges that range from 500W to 3500W and 0.9 GHz to 9 GHz. In one embodiment, the power transmission elements may include a rectangular interior cavity that enables the generation of a standing wave with two or more modes. In another embodiment, the power transmission elements may have a cylindrical interior cavity that may be placed along the plasma processing chamber or have one end of the cylinder placed against the plasma processing chamber.
Abstract:
A plasma-tuning rod configured for use with a microwave processing system. The waveguide includes a first dielectric portion having a first outer diameter. A second dielectric portion, with a second outer diameter greater than the first outer diameter surrounds the first dielectric portion, and may be coaxial therewith. In some embodiments of the present invention, a dielectric constant of the first dielectric portion may be equal to or greater than a dielectric constant of the second dielectric portion.
Abstract:
A surface wave plasma (SWP) source is described. The SWP source comprises an electromagnetic (EM) wave launcher configured to couple EM energy in a desired EM wave mode to a plasma by generating a surface wave on a plasma surface of the EM wave launcher adjacent the plasma. The EM wave launcher comprises a slot antenna having at least one slot. The SWP source further comprises a first recess configuration and a second recess configuration formed in the plasma surface, wherein at least one first recess of the first recess configuration differs in size and/or shape from at least one second recess of the second recess configurations. A power coupling system is coupled to the EM wave launcher and configured to provide the EM energy to the EM wave launcher for forming the plasma.
Abstract:
A radio frequency (RF) power coupling system is provided. The system has an RF electrode configured to couple RF power to plasma in a plasma processing system, multiple power coupling elements configured to electrically couple RF power at multiple power coupling locations on the RF electrode, and an RF power system coupled to the multiple power coupling elements, and configured to couple an RF power signal to each of the multiple power coupling elements. The multiple power coupling elements include a center element located at the center of the RF electrode and peripheral elements located off-center from the center of the RF electrode. A first peripheral RF power signal differs from a second peripheral RF power signal in phase.
Abstract:
A plasma system includes a plasma apparatus including: a plasma chamber; a pedestal configured to hold a substrate in the chamber; and a radio frequency (RF) electrode configured to excite plasma in the chamber; an electromagnetic (EM) circuit block coupled to the RF electrode, the EM circuit block including: a function generator configured to output a broadband RF waveform, the waveform having EM power distributed over a range of frequencies; a broadband amplifier coupled to an output of the function generator, an operating frequency range of the amplifier including the range of frequencies; and a broadband impedance matching network having an input coupled to an output of the broadband amplifier and an output coupled to a terminal of the RF electrode, an operating frequency range of the broadband impedance matching network including the range of frequencies; and a controller configured to adjust an input parameter of the EM circuit block.