Abstract:
La présente invention concerne un générateur pour exciter un transducteur piézoélectrique, notamment destiné à pulvériser un liquide, ce générateur comportant au moins une unité de traitement numérique et étant agencé pour fonctionner au moins selon une phase de fonctionnement itérative (200) comportant plus de deux itérations successives et pour, au cours de chaque itération : - exciter le transducteur à une fréquence variable dans une bande de fréquences autour d'une fréquence de consigne, - acquérir au cours de l'excitation du transducteur des valeurs prises par au moins une grandeur électrique liée à l'excitation du transducteur pour une pluralité de fréquences de cette bande, - analyser les valeurs ainsi acquises pour déterminer une nouvelle fréquence de consigne pour une itération suivante.
Abstract:
An electronic drive system for a droplet spay generation device of the type having a droplet generator including a perforate membrane driven by a piezoelectric transducer, the electronic drive system comprising: a programmable micro-controller providing a power supply for converting, in use, a battery supply voltage to power the device; a power amplifier connected to receive electric power from the power supply and supply a drive signal to the piezoelectric generator in use; and wherein the micro-controller is also arranged: to control the operation of the power amplifier, including the drive signal operating frequency at substantially its resonant frequency; to measure the current provided to the power amplifier by the power supply at a plurality of different frequencies; to determine, as the resonant frequency of the droplet generator, the frequency at which the maximum power is consumed by the amplifier, and to set the drive signal operating frequency at the resonant frequency.
Abstract:
An electronic drive system for a droplet spay generation device of the type having a droplet generator including a perforate membrane driven by a piezoelectric transducer, the electronic drive system comprising: a programmable micro-controller providing a power supply for converting, in use, a battery supply voltage to power the device; a power amplifier connected to receive electric power from the power supply and supply a drive signal to the piezoelectric generator in use; and wherein the micro-controller is also arranged: to control the operation of the power amplifier, including the drive signal operating frequency at substantially its resonant frequency; to measure the current provided to the power amplifier by the power supply at a plurality of different frequencies; to determine, as the resonant frequency of the droplet generator, the frequency at which the maximum power is consumed by the amplifier, and to set the drive signal operating frequency at the resonant frequency.
Abstract:
Ein für Flüssigkeitszerstäubung (5) zu verwendender Ultraschall-Schwinger (1) wird mit getakteter (N 1 , N 2 ; △t 1 , △t 2 ) elektrischer Anregungsleistung gespeist, wobei für jeweils ein kurzes erstes Intervall (At,) eine dieAnregungsschwelle (E) auch für ungünstigste Betriebsbedingung ausreichend übersteigende Höhe (N,) dieser Leistung vorgesehen ist.
Abstract:
A mist inhaler device (200) for generating a mist for inhalation by a user. The device includes a mist generator device (201) and a driver device (202). The driver device (202) is configured to drive the mist generator device (201) at an optimum frequency to maximise the efficiency of mist generation by the mist generator device (201).
Abstract:
The present disclosure provides an aerosol delivery device that may comprise a housing defining an outer wall and further including a power source and a control component. The device also includes a mouthpiece portion that defines an exit aerosol path, a tank portion that includes a reservoir configured to contain a liquid composition, and an atomization assembly configured to vaporize the liquid composition to generate an aerosol. The atomization assembly includes a mesh plate and a vibrating component, wherein the mesh plate and the vibrating component are configured to be separable from each other at a detachable interface. The detachable interface may be located at various locations of the device, including between the mouthpiece portion and the tank portion, within the mouthpiece portion, within the tank portion, within a separable atomization assembly, within a cartridge, within a control unit, or between a cartridge and a control unit.