Abstract:
A method of controlling a continuous steel strip casting process based on customer-specified requirements includes a general purpose computer in which product specifications of steel product ordered by a customer is entered. The computer is configured to automatically map the product specifications to process parameters/set points for controlling the continuous steel strip casting process in a manner to produce the customer ordered product, and in one embodiment produces a process change report detailing such process parameters/set points for operator use in physically implementing such process parameters/set points in the strip casting process. Alternatively, the computer may provide the process parameters/set points directly to the strip casting process for automatic control thereof in producing the customer ordered steel product. The process of the present invention is capable of substantially reducing the time between a customer request for a steel product and delivery thereof over that of conventional steel manufacturing processes.
Abstract:
Process for producing a high-strength steel strip, in which liquid steel is cast in at least one continuous-casting machine with one or more strands to form a slab and, utilizing the casting heat, is conveyed through a furnace device, undergoes preliminary rolling in a preliminary rolling device and, in a final rolling device, is finishing-rolled to form a steel strip with the desired final thickness, and, in a continuous, endless or semi-endless process, the slab undergoes preliminary rolling in, essentially, the austenitic range in the preliminary device and, in the final rolling device, is rolled in the austenitic range or, in at least one stand of the final rolling device, is rolled in the two-phase austenitic-ferritic range, the austenitic or austenitic, ferritic rolled strip, after leaving the final rolling device, is cooled rapidly in order to obtain the desired structure.
Abstract:
A plain carbon steel strip is continuously cast in a twin roll caster and passes to a run out table on which it is subjected to accelerated cooling by means of cooling headers whereby it is cooled to transform the strip from austenite to ferrite at a temperature range between 850° C. and 400° C. at a cooling rate of not less than 90° C./sec, such that the strip has a yield strength of greater than 450 MPa. The strip after casting and before cooling is passed through a hot rolling mill to reduce the thickness of strip by at least 15% and up to 50%.
Abstract:
The invention relates to a process for producing strips of homogenous structures and characteristics made of non-alloyed and low-alloyed steel by continuous hot rolling in several roll passes in the austenitic region and subsequently in the ferritic region, as well as coiling. The invention is characterised in that continuous-cast strip and/or strip rough rolled in the austenitic region, starting with a temperature T≧Ar3+30° C., with a total degree of deformation of eh≧30% is rolled in two or several roll passes in the austenitic region and in that the rolling stock is intensively cooled after every roll pass until the ferritic transformation has been completed, after which the rolling stock is end rolled to final thickness in the ferritic range in several passes with a total degree of deformation eh≧60%.
Abstract:
Method for the manufacture of a steel strip, wherein molten steel is cast into a slab, conveyed through a furnace, roughed in a roughing apparatus and finish-rolled in a finishing apparatus. The method comprises an endless or semi-endless process having either step a or step b, wherein a and b respectively comprise (a) manufacturing a ferritically rolled steel strip, wherein the slab is rolled in the roughing apparatus in the austenitic range and then cooled to a ferritic structure, and wherein the strip is rolled in the finishing apparatus at speeds essentially corresponding to the entry speed into the finishing apparatus, and (b) manufacturing an austenitically rolled steel strip, wherein the strip leaving the roughing apparatus is heated to the austenitic range and is rolled in the finishing apparatus and then cooled down to the ferritic range. In both step a and b, there is no material connection between the steel in the continuous casting machine and the steel being rolled in the finishing apparatus, and the strip is fed from the roughing apparatus to the finishing apparatus without intermediate storage. Additional steps include cutting the ferritically or austenitically rolled strip, after reaching the desired finished thickness, to portions of the desired length, and coiling the cut portions.
Abstract:
The invention relates to a method and installation for the continuous production of hot-rolled flat products made of a thin casting strip, comprising a casting machine (12) for producing a casting strip, a device for cooling the casting strip in the presence of a protective gas (2), a single-stand roughing train (3), a multiple-stand finishing train (5), a device (4) permitting a choice of cooling, heating or maintaining the temperature of the hot-rolled strip between the roughing train and finishing train (3, 5), shears (6) for separating the hot-rolled strip from coil to coil, a delivery roller table having devices for cooling (8, 9) the rolled hot strip and coiling machines (7, 10) mounted downstream from the production line for rolling up the finished strip.
Abstract:
Device for producing a thin steel strip, comprising at least one or more continuous-casting machines (1) for casting thin steel slabs, a furnace device (7) which is suitable for heating and/or homogenizing a slab, and at least one rolling device for reducing the thickness of a slab which is conveyed out of the furnace device (7), a welding machine being arranged between the continuous-casting machine (1) or continuous-casting machines (1) and the rolling device (10), for the purpose of joining slabs together.