Abstract:
An in-vehicle device in a vehicle transmits a request signal and a portable device returns a response signal including an ID code. The in-vehicle device collates the ID code included in the response signal with a registration code stored therein. When the result of collating the ID code becomes OK, the in-vehicle device outputs a height decreasing signal to a vehicle height control device to decrease the height of the vehicle. Thus, the height of the vehicle is decreased at the time when a user holding the portable device gets in the vehicle or loads baggage, making it easier for users to get in the vehicle or to load baggage.
Abstract:
An end member assembly can include a first end member section and a second end member section that together form an end member volume. A partition section is provided separately and is disposed within the end member volume to separate the end member volume into at least two volume portions. At least one passage extends through the partition section and at least one control device is disposed in fluid communication along the passage. The control device substantially fluidically isolates the two volume portions under conditions of use below a predetermined differential pressure threshold. The control device permits fluid communication between the two volume portions under conditions of use in which the predetermined pressure threshold is exceeded. Gas spring assemblies including such an end member assembly as well as suspension systems and methods of manufacture are also included.
Abstract:
The present invention relates to a spring unit (1) for a shock absorber (100) intended for a vehicle. The shock absorber (100) comprises a damping cylinder (101), wherein the damping cylinder (101) is adapted to be telescopically arranged within the spring unit (1). The spring unit (1) comprises a hollow body (2) comprising at least one compression chamber (2b) and at least one additional chamber (3) arranged to be in fluid communication with the compression chamber such that at least a first flow of fluid (Fl) is adapted to be allowed between the compression chamber (2b) and the additional chamber (3) when a threshold value is met. The invention further relates to a shock absorber (100) comprising such a spring unit (1), and a front fork comprising such a shock absorber (100) as well as a method for filling the shock absorber (100).
Abstract:
Die Erfindung betrifft eine Druckluftversorgungsanlage (10, 10A, 10B, 10C) zum Betreiben einer Pneumatikanlage (90), insbesondere einer Luftfederanlage eines Fahrzeugs, aufweisend: - eine Luftzuführung (0) und einem Luftverdichter (21) zur Versorgung einer Druckluftzuführung (1) mit Druckluft, - eine pneumatische Verbindung, insbesondere eine Entlüftungsleitung (30), mit einer Entlüftungsventilanordnung in Form einer steuerbaren Magnetventilanordnung (40, 40A, 40B, 40C) mit einem Magnetteil (43, 43A, 43B, 43C) und einem Pneumatikteil (44, 44A, 44B, 44C), und mit einem Entlüftungsanschluss (3) zum Ablassen von Luft, und - eine pneumatische Verbindung, insbesondere eine Druckluftversorgungsleitung (20), mit einem Lufttrockner (22) und einem Druckluftanschluss (2) zur Versorgung der Pneumatikanlage (90) mit Druckluft. Erfindungsgemäss ist dabei vorgesehen, dass in nicht angesteuertem Zustand des Magnetteils (43, 43A, 43B, 43C) der Magnetventilanordnung (40, 40A, 40B, 40C) der Pneumatikteil (44, 44A, 44B, 44C) der Magnetventilanordnung (40, 40A, 40B, 40C) geöffnet ist.
Abstract:
Die Erfindung betrifft ein Verfahren zur Luftmengenregelung in einem geschlossenen Luftfedersystem in einem Fahrzeug, bei dem eine Druckluftpumpe mindestens zwei Luftfedern und/oder einen Druckluftspeicher bedarfsgerecht mit einer derart großen Luftmenge versorgt, dass in der jeweiligen Luftfeder und/oder in dem Druckluftspeicher ein derart hoher Luftdruck herrscht, dass eine sich an der Luftfeder abstützende Fahrzeugkarosserie einen gewünschten Abstand zum Fahrweg oder zur Fahrzeugachse hat. Bei einem solchen Verfahren ist zur Realisierung von weitgehend konstanten Regelungsgeschwindigkeiten bei unterschiedlichen Beladungszuständen des Fahrzeugs sowie zur Nutzung eines kleineren als bei bekannten Systemen üblichen Druckluftspeichers vorgesehen, dass der Luftfederdruck (P) in wenigstens zwei der Luftfedern gemessen wird, dass der Abstand (HN, NN, TN) der Fahrzeugkarosserie zum Fahrweg oder zur Fahrzeugachse ermittelt wird, dass aus dem Luftfederdruck (P) und dem Abstand (HN, NN, TN) der Fahrzeugkarosserie zum Fahrweg oder zur Fahrzeugachse die Achslast (AL) wenigstens einer Fahrzeugachse bestimmt wird, und dass in Abhängigkeit von der jeweiligen Achslast (AL) ein Systemluftmengen-Sollwert (PV SOLL) bestimmt wird, auf den die tatsächliche Systemluftmenge durch Betätigen der Druckluftpumpe oder durch Betätigen eines Entlastungsventils eingestellt wird.
Abstract:
A method of positioning a vehicle chassis of a stationary vehicle in approximate alignment with a predetermined datum is provided. The vehicle has an axle and a fluid suspension system. The fluid suspension system includes a control device, a pressurized fluid source and an exhaust passage. The pressurized fluid source and the exhaust passage are in fluid communication with the plurality of fluid suspension members through the control device. The vehicle also includes an electronic control unit operatively associated with the control device. The method including steps of providing an alignment sensor supported on the chassis for outputting a signal indicative of the orientation of the chassis to the electronic control unit and acquiring a signal output by the alignment sensor. Another step includes comparing the signal from the alignment sensor to alignment data stored in the electronic control unit. A further step includes selectively operating the control device to permit fluid communication between one or more of the fluid suspension members and one of the pressurized fluid source and the fluid exhaust until the signal from the alignment sensor approximately corresponds to the alignment data. A system for performing the method is also discussed.
Abstract:
Proposed are an apparatus for and a method of controlling a vehicle suspension. The apparatus includes a sensor configured to acquire at least one of information on a road surface in front of a vehicle and state information of the vehicle; and a processor configured to predict a vehicular behavior based on the information acquired through the sensor and actuator information and to control at least one of a ride height of the vehicle, stiffness of an air spring, and a damping force of a damper based on the predicted vehicular behavior.
Abstract:
An end member assembly can include a first end member section and a second end member section that together form an end member volume. A partition section is provided separately and is disposed within the end member volume to separate the end member volume into at least two volume portions. At least one passage extends through the partition section and at least one control device is disposed in fluid communication along the passage. The control device substantially fluidically isolates the two volume portions under conditions of use below a predetermined differential pressure threshold. The control device permits fluid communication between the two volume portions under conditions of use in which the predetermined pressure threshold is exceeded. Gas spring assemblies including such an end member assembly as well as suspension systems and methods of manufacture are also included.
Abstract:
A method of controlling a suspension system of a vehicle includes identifying an amplitude and a frequency of at least one harmonic event in a topology of a surface to be traversed by the vehicle, and, with a controller, altering at least one response characteristic of at least one adjustable component of the suspension system based on at least one of the amplitude and frequency of the harmonic event. Systems and methods relate to controlling vehicle suspension systems.
Abstract:
A method of controlling an air suspension system may include a first process of determining, by a controller, whether a current situation is a parking situation that requires reduced air pressure in an air spring, a second process of maximizing, by the controller, damping force of a shock absorber when the current situation is the parking situation that requires the reduced air pressure in the air spring, and a third process of reducing air pressure in the air spring, by the controller, by bypassing compressed air stored in the air spring to a reservoir tank.