Abstract:
An air cushioned landing system for an air vehicle comprises an inflatable and deflatable skirt (113) in the form of a tube having inner (101) and outer (100) walls. The inner wall defines a central plenum (116) within the skirt, the skirt including gas pockets (130) arranged to stiffen one or more regions of at least one of the inner (101) and outer (100) walls during deflation of the skirt.
Abstract:
A hybrid air vehicle (100) is disclosed in which a cover is provided for a plurality of air cushioned landing pads (206) to reduce drag when airborne. The pad is inflatable to provide an air cushioned during touchdown and deflatable during flight of the air vehicle. The cover can include a first cover portion and a second cover portion. A first cover roller of the first cover portion and a matching second cover roller of the second cover portion abut to cover the corresponding pad. The first cover roller and the second cover roller, which are separate and free from a physical linkage there between, are separable in an eyelid fashion to expose the corresponding pad. A separation gap between the first cover roller and the second cover roller is increased or decreased by roller straps to cover or expose the corresponding pad.
Abstract:
The aircraft (10) comprises an elongated framework (26) provided with propelling means and direction-control planes. The framework is coupled to a pneumatic chamber (16) suited to be filled with lighter-than-air gas and comprising two tubular branches (12, 14) joined to form a V-shaped profile, with an aerodinamic-lift surface (22, 24) extending therebetween.
Abstract:
An airship/spacecraft, which, in a preferred embodiment, uses its lifting gas (64) as fuel for thrusters, which may be of the turbo-type or rocket type, or both, to achieve transition to space flight. The airship aspect has gas retaining structures (61) that can withstand internal and external pressure and can change in volume and shape. The gas retaining structures (61) may be compartmentalized with a folded diaphragm membrane (63) and also configured as pressure vessels. The spacecraft aspect provides control, power, services, and space for missions of the airship/spacecraft. The best mode includes a turbo-rocket thruster in which the turbine compressor is used to intake and compress a gaseous fuel for combustion with a stored oxidizer injected into the compressed gaseous fuel stream. The compressor stage (6) is driven by the turbine stage (7), which is driven by burning gaseous fuel passing across the turbine blades (13). The burned gases are then expanded through an exhaust nozzle and thereby ejected to produce reaction thrust.
Abstract:
A hybrid aircraft having VTOL R-VTOL and S-STOL capabilities having a lifting body hull (1) and four wing sections (20) arranged in tandem which are pivotally moveable about their neutral axis. Each wing section has mounted thereon a pivotal propeller-rotor (21) assembly for providing thrust substantially in a range between horizontal and vertical. The wings and propellers are integrated to the hull by an outrigger designed to be very stiff and to distribute forces from the wings and propellers from the hull. The hull is shaped to provide aerodynamic lift in an airstream and to facilitate construction by minimizing the number of panels of differing curvature required. The hull is formed of a pressure tensioned frame covered with semi-rigid panels, a lower cladding frame and bow and stem cladding nose cones. The semi-rigid panels covering the frame are formed of gas-tight and abrasion resistant laminate material and are connected to the frame by means of an interface rib and latch system. The frame is formed of a plurality of curved elongate segments arranged in series orthogonal to the long axis of the hull and connected by means of torsion members. A turbo-electric drive system can be used to drive the aircraft. An advanced hybrid aircraft is also described having about 8 to 12 high speed fans in place of the propeller-rotors.
Abstract:
A hybrid aircraft having VTOL R-VTOL and S-STOL capabilities having a lifting body hull (1) and four wing sections (20) arranged in tandem which are pivotally moveable about their neutral axis. Each wing section has mounted thereon a pivotal propeller-rotor (21) assembly for providing thrust substantially in a range between horizontal and vertical. The wings and propellers are integrated to the hull by an outrigger designed to be very stiff and to distribute forces from the wings and propellers from the hull. The hull is shaped to provide aerodynamic lift in an airstream and to facilitate construction by minimizing the number of panels of differing curvature required. The hull is formed of a pressure tensioned frame covered with semi-rigid panels, a lower cladding frame and bow and stem cladding nose cones. The semi-rigid panels covering the frame are formed of gas-tight and abrasion resistant laminate material and are connected to the frame by means of an interface rib and latch system. The frame is formed of a plurality of curved elongate segments arranged in series orthogonal to the long axis of the hull and connected by means of torsion members. A turbo-electric drive system can be used to drive the aircraft. An advanced hybrid aircraft is also described having about 8 to 12 high speed fans in place of the propeller-rotors.
Abstract:
A hybrid aircraft having VTOL R-VTOL and S-STOL capabilities having a lifting body hull (1) and four wing sections (20) arranged in tandem which are pivotally moveable about their neutral axis. Each wing section has mounted thereon a pivotal propeller-rotor (21) assembly for providing thrust substantially in a range between horizontal and vertical. The wings and propellers are integrated to the hull by an outrigger designed to be very stiff and to distribute forces from the wings and propellers from the hull. The hull is shaped to provide aerodynamic lift in an airstream and to facilitate construction by minimizing the number of panels of differing curvature required. The hull is formed of a pressure tensioned frame covered with semi-rigid panels, a lower cladding frame and bow and stem cladding nose cones. The semi-rigid panels covering the frame are formed of gas-tight and abrasion resistant laminate material and are connected to the frame by means of an interface rib and latch system. The frame is formed of a plurality of curved elongate segments arranged in series orthogonal to the long axis of the hull and connected by means of torsion members. A turbo-electric drive system can be used to drive the aircraft. An advanced hybrid aircraft is also described having about 8 to 12 high speed fans in place of the propeller-rotors.
Abstract:
A hybrid aircraft having VTOL R-VTOL and S-STOL capabilities having a lifting body hull (1) and four wing sections (20) arranged in tandem which are pivotally moveable about their neutral axis. Each wing section has mounted thereon a pivotal propeller-rotor (21) assembly for providing thrust substantially in a range between horizontal and vertical. The wings and propellers are integrated to the hull by an outrigger designed to be very stiff and to distribute forces from the wings and propellers from the hull. The hull is shaped to provide aerodynamic lift in an airstream and to facilitate construction by minimizing the number of panels of differing curvature required. The hull is formed of a pressure tensioned frame covered with semi-rigid panels, a lower cladding frame and bow and stem cladding nose cones. The semi-rigid panels covering the frame are formed of gas-tight and abrasion resistant laminate material and are connected to the frame by means of an interface rib and latch system. The frame is formed of a plurality of curved elongate segments arranged in series orthogonal to the long axis of the hull and connected by means of torsion members. A turbo-electric drive system can be used to drive the aircraft. An advanced hybrid aircraft is also described having about 8 to 12 high speed fans in place of the propeller-rotors.