Abstract:
A set of cars in an elevator system are scheduled by assigning passengers to the cars such that a current schedule for each car does not exceed a predetermined maximum number of stops per round trip, and the car is filled as near as possible to a maximum capacity at a predetermined bottleneck.
Abstract:
An exemplary method of controlling an elevator system includes determining a source floor of a new call from a passenger desiring elevator service. A direction of travel from the source floor for the new call is also determined. A path of a considered elevator car is simulated as if the new call were assigned to the considered elevator car by determining at least one of (i) a relationship between a position of the considered elevator car and the source floor or (ii) a relationship between a direction of movement of the considered elevator car and the direction of travel. The new call is assigned to one of a plurality of elevator cars if the assigning will satisfy each of (i) the one of the elevator cars will not move in a direction opposite the direction of travel during a time between the passenger boarding the one of the elevator cars and arriving at a destination of the passenger and (ii) the one of the elevator cars will not move in a direction opposite a travel direction of any currently assigned passenger during a time between the currently assigned passenger boarding the one of the elevator cars and arriving at a destination of the currently assigned passenger.
Abstract:
An elevator system (20) includes an elongated member (30, 32, 34) that may sway under certain conditions. An exemplary method of controlling the elevator system (20) includes selectively controlling an elevator car dispatching schedule when a condition exists that is conducive to sway of one of the elongated members (30, 32, 34). The control over the elevator car dispatching schedule controls the time that the elevator car is in a predetermined critical zone while the condition exists such that the time does not exceed a selected amount.
Abstract:
A method of controlling an intelligent destination elevator control system streamlines the control of two or more destination elevators. Operations of a group of destination elevators are monitored to gain experience about how the population is served by the group of destination elevators that serves a building or a building zone. The analysis of measured and/or modeled data and conditions with data about traffic patterns and traffic characteristics enables the system to dynamically control the destination elevators. The system may enhance passengers' experience through efficiency and/or with an improved comfort level.
Abstract:
A procedure for controlling an elevator group consisting of double deck elevators consists of allocating landing calls to elevators and elevator decks in such a way that passenger journey time is optimized. The time of the call and the estimated time of arrival to destination floor are taken into account. Passenger flow and elevator status within the elevator group are monitored and passenger wait time and arrive time estimated based thereon. The best elevator is selected to minimize passenger wait and ride time. The best deck is further selected based on the estimated wait time and ride time to minimize passenger journey time.
Abstract:
The invention relates to a procedure for controlling an elevator group consisting of double-deck elevators. According to the invention, landing calls are allocated to the elevators and after that to the elevator decks in such a way that the passenger journey time is optimised. The procedure of the invention takes into account the time the call has been on and the estimated time of arrival to the destination floor.
Abstract:
Elevator group supervisory control method and system for group supervisory control of a plurality of elevators serving a plurality of floors. The method and apparatus of the invention permits the inputting of qualitative requests (guidance), from the user, concerning elevator operation into the group supervisory control system. Qualitative requests concerning elevator operation are set in the form of guidance (or request) targets. The thus set request targets are converted into control targets for the elevators. Actual group supervisory control is executed using the control targets.
Abstract:
According to an example embodiment, an apparatus for scheduling elevator transport in an elevator system comprising one or more elevators is provided. The apparatus may be configured to: obtain, for a plurality of passengers, a respective transport request for elevator transport using said one or more elevators, the transport request comprising at least respective indications of an origin floor, a destination floor and a requested transport time window; derive, in dependence of said plurality of transport requests, a transport schedule that includes a respective transport allocation for each of said plurality of passengers, wherein a transport allocation for a passenger is derived in accordance with the requested transport time window indicated for the respective passenger, in view of transport allocations derived for other passengers and in view of a transport capacity of said one or more elevators and wherein the transport allocation for a passenger comprises at least a scheduled transport time for the respective passenger; and operate said one or more elevators in accordance with the derived transport schedule.
Abstract:
Elevator system passengers are transported in one or more of a plurality of elevator cars. The elevator cars can require different amounts of energy to operate. Passenger trips can be allocated to one car or another car based on the expected energy consumption for the trips in one or the other car.