Abstract:
The invention relates to a method and apparatus. In the method a target area is divided to a plurality of cells. A plurality of movement paths of mobile nodes are determined, each movement path comprising an origin cell and a target cell, the origin cell and the target cell being determined using a magnetic map of the target area. The durations of the plurality of movement paths are determined for an elevator user. A route topology data structure is formed using the plurality of movement paths and the durations of the plurality of movement paths, the data structure comprising for a plurality of cells an estimated time to reach an elevator location. An elevator call in a request cell is determined by a requesting mobile node. The time to reach the elevator location is determined using the data structure and information on the request cell, and an elevator car is selected to serve the elevator call based on the time to reach the elevator location, current positions of at least two elevator cars, and current directions of at the least two elevator cars.
Abstract:
Use of an elevator system can be reserved for a passenger based at least in part on an indicated arrival time for a passenger trip. The passenger trip includes a portion that is carried out using the elevator system and an additional portion. The passenger's elevator reservation is scheduled such that time is allotted for the passenger to complete both trip portions by the indicated arrival time.
Abstract:
A method for allocating destination calls in an elevator system, the system including at least one multi-deck elevator, where the passenger gives his/her destination floor by means of a destination call device at the beginning of the journey route, thereby defining the staffing point and final point of the passenger's journey route in the elevator system. The method includes the steps of generating possible route alternatives from the staffing point to the final point of the journey route, determining a cost function containing at least one travel time term, determining the value of the travel time term corresponding to each route alternative in the cost function, calculating the total cost of each route alternative by using the cost function, allocating for the passenger the route alternative that gives the minimum total cost, and guiding the passenger to a waiting lobby and/or elevator consistent with the route alternative allocated.
Abstract:
A control system for elevators is provided with a landing call registration device provided at each of landing floors so as to be operable thereat, a landing call automatic registration portion for setting that one of the landing floors at which the landing call registration device is operated as a car call floor and registering a car call to stop one of cars at the car call floor, a response selection portion for selecting that one of elevator apparatuses which responds to a registered car call as a selected elevator, a passenger traveling time period calculation portion for setting that one of elevator doorways of the selected elevator which is provided at the car call floor as a selected doorway and calculating a passenger traveling time period corresponding to the selected doorway, and an opening/closing control portion for controlling the opening/closing operation of the selected doorway based on information from the selected elevator and information from the passenger traveling time period calculation portion. When the selected doorway is already in a door-open state at the time of registration of the car call, the opening/closing control portion continues to hold the selected doorway in the door-open state until the passenger traveling time period elapses after registration of the car call.
Abstract:
An intelligent destination elevator control system streamlines the efficiency and control of destination elevators. The system monitors a building's population and predicts elevator traffic conditions. The system may monitor attributes of the destination elevators. Based on the monitored data, the system may generate a data structure that renders time-tables and target elevator service quality parameters that may control the destination elevators. A time-table and target elevator service quality parameters may be selected to control destination elevators according to one or more customer selectable mode of operation parameters. The data structure may be processed to control UP and/or DOWN transportation capacities of the destination elevators while satisfying the one or more customer selectable mode of operation parameters.Some intelligent destination elevator control systems may control when elevator cars of a group service the floors of a building. Control of the elevator cars may be flexible to allow the system to increase or decrease traffic capacities of the elevator cars in accordance with anticipated traffic conditions.
Abstract:
A system for selecting an elevator in a group consisting of elevators serving the floors of a building, each floor being provided with call input devices for the input of the passengers' calls, the elevator group having a group control unit controlling the group and provided with at least one computer. On the basis of the call sent by a call input device, the group control unit finds out which call input device has issued the call and selects one of the elevators for serving the floor in question on the basis of the passengers' location on the landing according to the information thus obtained.
Abstract:
According to an example embodiment, an apparatus for scheduling elevator transport in an elevator system comprising one or more elevators is provided. The apparatus may be configured to: obtain, for a plurality of passengers, a respective transport request for elevator transport using said one or more elevators, the transport request comprising at least respective indications of an origin floor, a destination floor and a requested transport time window; derive, in dependence of said plurality of transport requests, a transport schedule that includes a respective transport allocation for each of said plurality of passengers, wherein a transport allocation for a passenger is derived in accordance with the requested transport time window indicated for the respective passenger, in view of transport allocations derived for other passengers and in view of a transport capacity of said one or more elevators and wherein the transport allocation for a passenger comprises at least a scheduled transport time for the respective passenger; and operate said one or more elevators in accordance with the derived transport schedule.
Abstract:
In methods and a system for enabling temporary interaction between a user device of a passenger and an elevator or an elevator group provided for public use in a public space, a database is maintained that includes information on at least one elevator or elevator group available for public use. A user device sends a request message that includes validation information. The request message is validated by verifying that the unique identification of the elevator or elevator group in said validation information is among said at least one elevator or elevator group available for public and that geographical locations of the user device and the elevator or elevator group fulfill a predefined proximity criterion. If the request message is deemed valid, temporary access is granted to an elevator application running on the user device for entering at least one call for elevator service via an elevator call API.
Abstract:
According to an aspect, there is provided a method and an apparatus. In the solution, an elevator call indication associated with a user is obtained. First guidance information is caused to be provided for the user to proceed to a waiting area. Location data associated with the user is obtained, the location data providing information about the location of the user. An elevator car is allocated in response to the elevator call indication, wherein the allocation takes into account the location of the user.
Abstract:
An elevator system configured to determine and transmit an estimated elevator boarding time to a mobile call input device, wherein the boarding time includes the arrival time of the elevator car based on a registered target floor registration information and the duration of time to place the elevator car door and the hoistway door in a fully open state.