Abstract:
A method of manufacturing a hollow micro-needle structure includes the steps of: disposing a first mask layer and a second mask layer respectively aside a first substrate and aside a rear surface of the first substrate, wherein the first substrate is transparent to predetermined light; forming a photoresist layer on the front surface of the first substrate and the first mask layer; providing the predetermined light to illuminate the first substrate in a direction from the rear surface to the front surface so as to expose the photoresist layer to form an exposed portion and an unexposed portion; and removing the unexposed portion to form the micro-needle structure, which is formed by the exposed portion. The micro-needle structure has an inclined sidewall and a through hole surrounded by the inclined sidewall.
Abstract:
The present invention is related to a flexible substrate structure for microneedle arrays and its manufacturing method, whose structure mainly comprising: tapered shape objects and flexible substrate. Wherein, structure of the tapered shape object is composed of a tip, sidewalls, and a base. Meanwhile, the flexible substrate winds tightly around sidewalls of tapered shape objects and is set up on, yet covers the base surface of tapered shape object which faces the tip of tapered shape object. Because the structure applies a flexible substrate along with tapered shape objects, hence, the fit-to-body capability is increased and allows thereof more appropriate for backside drug delivery, as well as sufficiently bring the characteristic of large-area manufacturing into full play.
Abstract:
A method of manufacturing a moldable microneedle array (54) is described comprising providing a negative mold insert (44) characterized by a negative image of microneedle topography wherein at least one negative image of a microneedle is characterized by an aspect ratio of between about 2 to 1 and about 5 to 1. The negative mold insert (44) is used to define a structured surface of a negative mold cavity (42). Molten plastic material is injected into the heated negative mold cavity. The molten plastic material is subsequently cooled and detached from the mold insert to provide a molded microneedle array (54). One manner of using microneedle arrays of the present invention is in methods involving the penetration of skin to deliver medicaments or other substances and/or extract blood or tissue through the skin.
Abstract:
Improved microneedle arrays are provided having a sufficiently large separation distance between each of the individual microneedles to ensure penetration of the skin while having a sufficiently small separation distance to provide high transdermal transport rates. A very useful range of separation distances between microneedles is in the range of 100–300 microns, and more preferably in the range of 100–200 microns. The outer diameter and microneedle length is also very important, and in combination with the separation distance will be crucial as to whether or not the microneedles will actually penetrate the stratum corneum of skin. For circular microneedles, a useful outer diameter range is from 20–100 microns, and more preferably in the range of 20–50 microns. For circular microneedles that do not have sharp edges, a useful length for use with interstitial fluids is in the range of 50–200 microns, and more preferably in the range of 100–150 microns; for use with other biological fluids, a useful length is in the range of 200 microns–3 mm, and more preferably in the range of 200–400 microns. For circular microneedles having sharp side edges, a useful length for use with interstitial fluids is in the range of 50–200 microns, and more preferably in the range of 80–150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns–3 mm, and more preferably in the range of 200–400 microns. For solid microneedles having a star-shaped profile with sharp edges for its star-shaped blades, a useful length for use with interstitial fluids is in the range of 50–200 microns, and more preferably in the range of 80–150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns–3 mm, and more preferably in the range of 200–400 microns, while the radius of each of its blades is in the range of 10–50 microns, and more preferably in the range of 10–15 microns.
Abstract:
A method and apparatus for puncturing a surface for extraction, in situ monitoring, and/or substance delivery uses microneedles with improved properties. Applications include easy to handle glucose monitoring using a group of hollow out-of-plane silicon microneedles to sample substances in interstitial fluid from the epidermal skin layer.
Abstract:
The present invention provides a microneedle incorporating a base that is broad relative to a height of the microneedle, to minimize breakage. The microneedle further includes a fluid channel and a beveled non-coring tip. Preferably arrays of such microneedles are fabricated utilizing conventional semiconductor derived micro-scale fabrication techniques. A dot pattern mask is formed on an upper surface of a silicon substrate, with each orifice of the dot pattern mask corresponding to a desired location of a microneedle. Orifices are formed that pass completely through the substrate by etching. A nitride pattern mask is formed to mask all areas in which a nitride layer is not desired. A nitride layer is then deposited on the bottom of the silicon substrate, on the walls of the orifice, and on the top of the silicon substrate around the periphery of the orifice. The nitride layer around the periphery of the orifice is offset somewhat, such that one side of the orifice has a larger nitride layer. Anisotropic etching is used to remove a substantial portion of the substrate, creating a plurality of angular, blunt, and generally pyramidal-shaped microneedles. A subsequent removal of the nitride layer, followed by an isotropic etching step, softens and rounds out the blunt angular microneedles, providing generally conical-shaped microneedles. The uneven nitride layer adjacent the orifice ensures that the microneedles will include a beveled tip. Such microneedle arrays are preferably incorporated into handheld diagnostic and drug delivery systems.
Abstract:
A method is provided for manufacturing microstructures of the type which contain a substrate and an array of protruding microelements with through-holes, which are used in penetrating layers of skin. The microelements are embossed or pressed into an initial substrate structure, which in some embodiments is formed from extruded polymeric material, and in some cases from two layers of polymer that are co-extruded. The through-holes are formed from filled through-cylinders of a second material that is removed after the embossing or pressing step; in other instances, the through-holes are left hollow during the embossing or pressing step.
Abstract:
A microprotrusion array is formed from a silicon wafer by a plurality of sequential plasma and wet isotropic and anisotropic etching steps. The resulting microprotrusions have sharpened tips or cutting edges formed by a wet isotropic etch.
Abstract:
A device for the transport of fluids through a biological barrier includes a number of microneedles projecting from the front face of a substrate. A conduit is associated with each of the microneedles to provide a fluid flow path for transport of fluid through a hole in the biological barrier formed by the corresponding microneedle. Each of the microneedles is configured to provide a penetrating tip, and each conduit terminates at an opening which is proximal with respect to the microneedle tip. Also described are microneedle-based devices with integrated MEMS pumping configurations for withdrawal and/or delivery of fluids, and remote healthcare systems based on such devices.
Abstract:
Provided are a transdermal absorption sheet capable of achieving control of the dissolution rate and suppression of diffusion of a drug, and a method of producing the same. A transdermal absorption sheet 100 includes a sheet portion 116, and a plurality of needle-like protruding portions 110 formed by a plurality of frustum portions 114 arranged on the sheet portion 116 and needle portions 112 arranged on the frustum portions 114, in which at least one of the needle-like protruding portions 110 has a cavity portion 124 extending from the sheet portion 116 to the frustum portion 114.