Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.
Abstract:
A system and method for sintering a thin, high purity fused silica glass sheet having a thickness of 500 μm or less, includes a step of rastering a beam of a laser across a sheet of high purity fused silica soot; wherein a pattern of the rastering includes tightly spacing target locations on the sheet such that the laser sinters the soot and simultaneously forms tiny notches on a first major surface of the sheet when viewed in cross-section, wherein the tiny notches are crenellated such that at least some of the notches have generally flat bottom surfaces and at least some respective adjoining caps have generally plateau top surfaces offset from the bottom surfaces by steeply-angled sidewalls.
Abstract:
The invention describes a method for the manufacture of quartz glass that comprises not only doping with rare earth elements and/or transition metals, but also fluorination of the quartz glass. The method described presently allows the diffusion of the dopants during fluorination to be prevented. Moreover, the invention relates to the quartz glass that can be obtained according to the method according to the invention and the use thereof as laser-active quartz glass, for generating light-guiding structures, and in optical applications.
Abstract:
The present invention embraces an amplifying optical fiber having a central core adapted to convey and amplify an optical signal and a cladding that surrounds the central core to confine the optical signal conveyed in the central core. The central core is formed of a core matrix in which nanoparticles are present. The nanoparticles themselves include a nanoparticle matrix and rare-earth-dopant elements. The core matrix may also include one or more additional dopants (i.e., in addition to nanoparticles). The amplifying optical fiber possesses a small numerical aperture and is suitable for use in high-pump-power applications without a degraded gain shape.
Abstract:
Various embodiments described herein include rare earth doped glass compositions that may be used in optical fiber and rods having large core sizes. Such optical fibers and rods may be employed in fiber lasers and amplifiers. The index of refraction of the glass may be substantially uniform and may be close to that of silica in some embodiments. Possible advantages to such features include reduction of formation of additional waveguides within the core, which becomes increasingly a problem with larger core sizes.