Abstract:
Cristobalite-containing silica glass is provided wherein .alpha.-cristobalite in the shape of a small sphere or a small, round-edged or sharp-edged, three-dimensional region is dispersed in the silica glass matrix. The diameter of each .alpha.-cristobalite sphere or region is, in the range of 0.1 um to 1000 um, and the content of the .alpha.-cristobalite is at least 10 wt. %. The cristobalite-containing silica glass is produced by heating a mixture of two kinds or more of crystalline silicon dioxide powder with melting points different from each other by 20.degree. C. or more. The mixture contains silicon dioxide having the highest melting point in the range of 10 wt. % to 80 Wt. % and is heated at temperatures ranging from the lowest melting point to a temperature lower than the highest melting point.
Abstract:
A process for producing opaque silica glass in which a quartz raw material grain having a particle size of 10 to 350 .mu.m is filled into a heat resistant mold, the quartz raw material grain is heated in a non-oxidizing atmosphere from a room temperature up to a temperature lower by 50.degree. to 150.degree. C. than a temperature at which the above raw material grain is melted at a temperature-increase speed not exceeding 50.degree. C./minute, then, slowly heated up to a temperature higher by 10.degree. to 80.degree. C. than the temperature at which the quartz raw material grain is melted at the speed of 10.degree. C./minute or less, and the heated quartz raw material grain is further maintained at the temperature higher by 10.degree. to 80.degree. C. than the temperature at which the quartz raw material grain is melted, followed by cooling down to the room temperature. Especially, in the case of producing a large scale opaque silica glass block, a quartz raw material grain filled into a heat-resistant mold is heated by a belt-like heating source located perpendicularly to a trunk of a filling layer of the quartz raw material grain so as to form a moving heating zone in the filling layer and the heating zone is successively moved either upwardly starting at the lower end portion of the filling layer or downwardly starting at the upper end portion thereof in a non-oxidizing atomosphere.
Abstract:
A reactor vessel includes a quartz glass body having sidewalls and a ceiling formed as a single unit without welds. Translucent or opaque portions are formed by bubbles in the glass where heat insulation is desired and transparent portions are formed by absence of bubbles where heat transmission and visibility are desired. The body is formed by adding quartz glass powder to a mold which is rotated about a central axis so that centrifugal force causes a layer of powder to form on the inside of the mold. The layer is then heated until it melts.
Abstract:
Thermally stable, mechanically strong microporous glass articles with large pore volumes, surface areas, and varying pore sizes, and methods for making such articles are disclosed. In particle form, such as beads, the microporous glass articles are useful as catalyst supports in applications such as petroleum catalytic refiners, chemical processes and motor vehicle catalytic mufflers. The mechanical strength and the dimensional stability of the microporous glass articles at elevated temperatures can be improved if the articles are preshrunk, such as by brief exposure to high temperatures, before their intended use, and can be improved even further if treated with certain metal oxides.
Abstract:
A spherical inorganic oxide powder wherein a volume-based cumulative 50% diameter D50 is 4-55 μm; and in a cross-section of a cured body containing an epoxy resin and the spherical inorganic oxide powder at a mass ratio of 2:1, when a total of 5000 particles with a maximum diameter of 51 μm or larger are observed in a field of view at 100× magnification using a scanning electron microscope, a total number of air bubbles having a maximum diameter of 1 μm or larger and smaller than 10 μm is 40 or fewer and a total number of air bubbles having a maximum diameter of 10 μm or larger is 30 or fewer.
Abstract:
An alkali-free glass substrate contains, as represented by mass % based on oxides: 54% to 68% of SiO2; 10% to 25% of Al2O3; 0.1% to 5.5% of B2O3; and 8% to 26% of MgO+CaO+SrO+BaO. The alkali-free glass substrate has β-OH of 0.15 mm−1 to 0.35 mm−1, and a Cl content of 0.15 to 0.3 mass %. A bubble growth index I of the alkali-free glass substrate given by the following formula is 320 or more: I=590.5×[β-OH]+874.1×[Cl]−5.7×[B2O3]−33.3. In the formula, [β-OH] is β-OH of the alkali-free glass substrate in mm−1, [Cl] is the Cl content of the alkali-free glass substrate in mass %, and [B2O3] is a B2O3 content of the alkali-free glass substrate in mass %.
Abstract:
The present invention concerns a method for preparing glass having bimodal macroporous and mesoporous porosity, whereby macroporous glass is subjected to pseudomorphic transformation. The present invention also concerns the said glass thus prepared, optionally functionalised, and the different uses thereof.
Abstract:
A single-crystal silicon pulling silica container including: a transparent silica glass layer in the inner side of the silica container; and an opaque silica glass layer containing gaseous bubbles in the outer side of the silica container, wherein the transparent layer constitutes of a high-OH group layer placed on an inner surface side of the silica container containing the OH group at a concentration of 200 to 2000 ppm by mass and a low-OH group layer having the OH group concentration lower than the high-OH group layer containing Ba at a concentration of 50 to 2000 ppm by mass. Resulting in the silica container used for pulling single-crystal silicon, providing the silica container improves etching corrosion resistance of the container inner surface to silicon melt when the entire inner surface of transparent silica glass of the container is crystallized short after using the container and method for such silica container.
Abstract:
The present invention is to provide a synthetic quartz glass body having a high light transmittance. The present invention provides a synthetic quartz glass body having pores in a surface part thereof.
Abstract:
Provided is a method for producing a synthetic opaque quartz glass where flame processing can be performed in high purity with a simple way and even a large sized one can be produced, and the synthetic opaque quartz glass.A method for producing a synthetic opaque quartz glass which comprises the step of heating and burning a quartz glass porous body under a pressure of from 0.15 MPa to 1000 MPa at a temperature of from 1200° C. to 2000° C. The quartz glass porous body is prepared by depositing quartz glass particles which are produced by hydrolyzing a silicon compound with an oxyhydrogen flame.