Abstract:
A sliding device 1 includes a swash plate 3 rotated in association with a rotating shaft 2 and a plurality of semispherical shoes 4 sliding on the swash plate 3. The semispherical shoe 4 is formed of a ferrous material, and the swash plate 3 is manufactured using high-strength brass as a material.On a sliding surface 4A of the shoe 4, a large number of minute annular expandingly projecting parts 7′ are formed by laser hardening, and a lubricating oil passage 10′ consisting of a reticular concave part is also formed.Thereby, the sliding device 1 having excellent seizure resistance as compared with the conventional sliding device can be provided.
Abstract:
A scroll compressor includes an Oldham coupling which prevents the orbiting scroll member from rotating when driven by a rotating shaft. The Oldham coupling is formed of titanium or titanium alloy, thus increasing the strength of the Oldham coupling while minimizing its weight. Reduced coupling weight minimizes unnecessary scroll compressor vibration.
Abstract:
A compressor used in a refrigerating cycle is provided as a miniaturized and lightweight unit at low production cost by selecting an optimal material to constitute components or by forming the housing in a specific shape so as to allow the components to have smaller wall thicknesses while assuring sufficient strength. A tough material achieving a tensile strength greater than 800 N/mm2 is used when forming at least one of the components constituting the housing and the internal mechanisms. In addition, over the area of the housing where the bottom surface and the inner circumferential surface connect with each other, the bottom surface forms an R-shaped portion and the inner circumferential surface forms a sloping portion or an R-shaped portion.
Abstract translation:在制冷循环中使用的压缩机通过选择构成部件的最佳材料或通过将壳体形成为特定形状而以低生产成本提供为小型轻型单元,以允许部件具有更小的壁厚,同时确保足够的 强度。 当形成构成外壳的部件和内部机构中的至少一个时,使用达到大于800N / mm 2的拉伸强度的韧性材料。 此外,在底面和内周面彼此连接的壳体的区域中,底面形成R形部分,并且内周面形成倾斜部分或R形部分。
Abstract:
Linear actuators (also known as an inchworm actuator) including a magnetically actuatable shape memory alloy (SMA) are described. The linear actuators include a bar and an actuator assembly, configured to achieve a linear displacement of the actuator assembly relative to the bar. A hybrid magnetic trigger including an electromagnet and a permanent magnet is used to selectively attract the magnetically actuatable SMA toward the magnetic trigger. The motion of the magnetically actuatable SMA can be converted to a linear displacement. The magnetically actuatable SMA can be implemented using a SMA exhibiting both ferromagnetic and SMA properties, or by a ferromagnetic mass coupled with an SMA (i.e., a ferromagnetic SMA composite). Linear actuators including bars incorporating a ratchet mechanism, and featureless bars are described. A hydraulic system incorporating actuators including magnetically actuatable SMA membranes is also disclosed.
Abstract:
A compressor, which is adapted for use in an air-conditioning system of a motor vehicle, having a housing (2) and a compressor unit (1) arranged in the housing (2) for drawing in and compressing a coolant. The structural size of the compressor is reduced, while sufficient compressor capacity is ensured, as a result of manufacturing the housing (2) from a high-strength material and using a gas that has a high density even in the drawn-in state as the coolant.
Abstract:
A method and apparatus for pumping a coolant through a laser cavity to cool the laser. The apparatus has a titanium housing and a casing containing a rotatable titanium hollow shaft. A titanium impeller is located at one end of the shaft within the housing and rotates with the shaft to pump the fluid through a laser. Disposed within casing and attached to the shaft are a plurality of permanent magnets. External to the casing are stator windings through which current flows to create a magnetic field that rotates the permanent magnets, shaft and impeller. When the impeller is rotated, the coolant is passed through the housing and to the laser. The impeller also forces the fluid passing through the shaft and into the casing to cool and lubricate the pump. The magnets are encased in a titanium sleeve attached to the titanium shaft to prevent the coolant from contacting with the magnets.
Abstract:
A vacuum pump and a vacuum pump rotor blade that can effectively limit deposition of reaction products are provided. The vacuum pump includes a rotating shaft held rotationally, a drive mechanism for the rotating shaft, a first rotor blade made of a first material, a second rotor blade made of a second material having higher heat resistance than the first material, and disposed further toward a downstream side than the first rotor blade, and a casing enclosing the rotating shaft, the first rotor blade, and the second rotor blade. The second rotor blade is disposed, via a heat insulating portion, on the first rotor blade.
Abstract:
A bearing carrier has a bearing body including a first material. The bearing body has an exterior surface defining a bridge land with a finger cut and rotatably supports a first and second gear. The first and second gears intermesh with one another for pressurizing fluid traversing the gears between a fluid inlet and a fluid outlet defined in a housing enveloping the bearing carrier.The bridge land is defined in a second material integral with the first material. Methods fabricating a bearing carrier for a gear pump are also disclosed.
Abstract:
A bearing carrier has a bearing body including a first material. The bearing body has an exterior surface defining a bridge land with a finger cut and rotatably supports a first and second gear. The first and second gears intermesh with one another for pressurizing fluid traversing the gears between a fluid inlet and a fluid outlet defined in a housing enveloping the bearing carrier. The bridge land is defined in a second material integral with the first material.
Abstract:
Systems and methods are provided for forming an engine comprising a thermoset composite engine block. One example method includes reinforcing the engine block with a plurality of metal strips, wherein a first portion of the plurality of metal strips are positioned in a substantially transverse direction of the engine block and a second portion of the plurality of metal strips are positioned in a substantially longitudinal direction of the engine block. The plurality of metal reinforcing strips may provide additional reinforcement to the engine block.