Abstract:
An example method includes receiving a first set of data that includes spectral metrics provided by a spectral acquisition apparatus that obtains the spectral metrics based on interactions of electromagnetic radiation with a sample. The first set of data is processed to obtain a second set of data that includes the spectral metrics. One or more trained models are applied to the spectral metrics or a set of values based on the spectral metrics to obtain a result. Based on the result, either a positive particle of interest detection or a negative particle of interest detection for the particle of interest for the sample is determined. A particle of interest detection notification that indicates either the positive particle of interest detection or the negative particle of interest detection for the particle of interest for the sample may be generated and provided.
Abstract:
There is disclosed a sample holder comprising: a base member; a holder member attached to the base member, the holder member having at least one flexible tab resiliently biased towards the base member; wherein one of the base member and the tab comprises a first formation provided on a face thereof so that a sample having a corresponding second formation can be located between the tab and the base member and retained by cooperation of the first and second formations.
Abstract:
In some aspects, a device for apportioning granular samples includes a sample feeder defining a conduit, the conduit including a first opening to receive the granular samples and a second opening. The device includes a shuttle operably coupled to the sample feeder to receive the granular samples from the conduit via the second opening. The shuttle is configured to apportion the granular samples to incrementally enter a sample chamber to be analyzed. The device includes an outlet conduit fluidly coupled to the sample chamber and configured to permit the sample chamber to be evacuated.
Abstract:
The present invention provides a device and method for analyzing the characteristics of a biopolymer with excellent mechanical stability, high spatial resolution and sensitivity using a simple device construction. Specifically, the Raman scattered light of a biopolymer is measured and the properties of monomer units forming the biopolymer are analyzed by using a biopolymer property analysis chip (100a) characterized by comprising: a solid substrate (110); at least one nanopore (120) disposed in the solid substrate (110); and one or more electrically conductive thin films (130a, 130b) disposed on the solid substrate (110). The biopolymer property analysis chip (100a) is characterized in that the electrically conductive thin films (130a, 130b) are disposed partially on the solid substrate (110) where the nanopore (120) is formed and a biopolymer which has penetrated into the nanopore (120) is caused to generate Raman scattered light by means of irradiation with external light.
Abstract:
The present disclosure generally relates to systems, devices and methods for analyzing and processing samples or analytes. In one example configuration, a method of analyzing an analyte includes shaving a first layer of a plurality of layers of an analyte to expose a first surface of an analyte. The method includes positioning the first surface of the analyte over a window of a hyperspectral analyzation subassembly. The method further includes scanning the first surface of the analyte by the hyperspectral analyzation subassembly to obtain information regarding the analyte proximate the first surface. Other systems, devices and methods are disclosed herein.
Abstract:
An apparatus for assisting in measuring a color of a target includes an enclosed housing having a first aperture formed in a first end and a second aperture formed in an opposite second end and aligned concentrically with the first aperture, an array of light emitting diodes positioned inside the housing, between the first aperture and the second aperture, and an array of reference colors having known reflectance spectra, the array of reference colors being removably positioned inside the housing, between the array of light emitting diodes and the second aperture.
Abstract:
A system and method for improving the outcome and consistency of hair coloring is provided. In an example method, an image of hair having a sample color may be received. A color space characteristic associated with the hair sample may be determined. An indication of a target color may be received. A colorant formulation may be identified for changing the hair from the sample color to the target color.
Abstract:
A measuring cell for a gas analysis spectrometer has an inner chamber (23) for a sample gas to be analyzed and an inlet (21) and an outlet (22) which are connected thereto. A traversing optical path for a measuring beam (14) is formed in the inner chamber (23). The measuring cell is tubular, the inlet (21) and the outlet (22) are arranged at opposite ends, and the inner chamber (23) of the measuring cell has a cross-sectional shape that is monotonic over the length of the tube and which has an oval-shape at the start, which disappears toward the end. That special shape results in fast gas exchange and thus high dynamics, even with larger measuring cells, which have high sensitivity due to the long optical paths thereof. Two characteristics which until now appeared to be conflicting are thereby combined.
Abstract:
A system and method for improving the outcome and consistency of hair coloring is provided. In an example method, an image of hair having a sample color may be received. A color space characteristic associated with the hair sample may be determined. An indication of a target color may be received. A colorant formulation may be identified for changing the hair from the sample color to the target color.
Abstract:
A measuring cell for a gas analysis spectrometer has an inner chamber (23) for a sample gas to be analyzed and an inlet (21) and an outlet (22) which are connected thereto. A traversing optical path for a measuring beam (14) is formed in the inner chamber (23). The measuring cell is tubular, the inlet (21) and the outlet (22) are arranged at opposite ends, and the inner chamber (23) of the measuring cell has a cross-sectional shape that is monotonic over the length of the tube and which has an oval-shape at the start, which disappears toward the end. That special shape results in fast gas exchange and thus high dynamics, even with larger measuring cells, which have high sensitivity due to the long optical paths thereof. Two characteristics which until now appeared to be conflicting are thereby combined.