Abstract in simplified Chinese:本发明提供一种光学特性测量系统,能够以比较短的时间设置完成,且能够提高检出感度。光学特性测量系统,包括第1测量设备。第1测量设备包括:第1检出组件,配置于框体内;第1冷却部,至少部分地接合第1检出组件,用以冷却第1检出组件;以及抑制机构,用以抑制在框体内的第1检出组件的周围产生的温度变化。
Abstract:
비교적짧은시간에셋업할수 있고, 또한검출감도를높일수 있는광학특성측정시스템이제공된다. 광학특성측정시스템은, 제1 측정장치를포함하고있다. 제1 측정장치는, 하우징내에배치된제1 검출소자와, 제1 검출소자에적어도부분적으로접합되며, 검출소자를냉각하기위한제1 냉각부와, 하우징내의검출소자의주위에발생하는온도변화를억제하기위한억제기구를포함한다.
Abstract:
본 발명은, 센서(1)를 이용하는 측정 과정에 있어서, 측정값에 대한 온도 의존 오차 보상, 특히 "드리프트" 오차 원("drift" error source)과 관련된 보상을 발생시키기 위한 방법 및 전자 장치(6)에 관한 것이다. 전자 회로(6)는 하나 또는 그 이상의 가스 및/또는 가스 혼합물의 존재를 확립하고 그리고/또는 그러한 가스 또는 가스 혼합물의 농도를 계산하기에 적합하다. 하나의 선택된 측정 주기(T1) 동안 발생하고 확립된 최고 측정값(Mmax) 또는 최저 측정값(Mmin)은 메모리(69')에 저장되게 된다. 하나의 선택된 기간(T1) 동안 발생하고 평가된 최저 아날로그 값 또는 최고 디지털화 측정값은 상기 메모리(69')에 저장되어야 하고; 하나의 선택된 측정 주기 또는 기간(T1)의 끝에서 발생하고 평가된 측정값(Mmax; Mmin)은 저장된 아날로그 또는 A/D 컨버터를 통해 디지털화된 참고값(65')과 비교되게 되며; 그리고 평가되고 측정된 최저 또는 최고 값과 상기 저장된 대조값 사이의 차이는 다음 기간(T2)에 발생하는 측정값의 관련된 및/또는 상응하는 보상(K1)을 위한 기초로 사용된다.
Abstract:
Die Erfindung bezieht sich auf einen Reaktionsträger (14), eine Messvorrichtung (12) und ein Messverfahren zur Messung einer Konzentration von gas- und/oder aerosolförmigen Komponenten eines Gasgemisches. Der Reaktionsträger (14) weist zumindest einen Strömungskanal (42) auf, der sich zwischen zwei Anschlusselementen (44) erstreckt, und der Strömungskanal (42) bildet eine Reaktionskammer (46), in welcher ein Reaktionsstoff (48) vorgesehen ist, welcher ausgebildet ist, um mit zumindest einer zu messenden Komponente des Gasgemisches oder einem Reaktionsprodukt der zu messenden Komponente eine optisch detektierbare Reaktion einzugehen. Ferner weist der Reaktionsträger (14) zumindest ein Temperaturmesselement (88) auf. Die Messvorrichtung (12) weist zumindest ein Temperaturmesselement (90) auf, welches eine Temperatur der Messvorrichtung (12) und/oder des Reaktionsträgers (14) erfasst, sowie eine Temperaturbestimmungseinheit (92), welche in Abhängigkeit von dem Messergebnis des zumindest einen Temperäturmesselements (90) eine Temperatur des Gasgemisches bestimmt. Das Messverfahren umfasst die Bestimmung einer Temperatur des geförderten Gasgemisches im Strömungskanal (42) und die Bestimmung einer Konzentration der zumindest einen Komponente in Abhängigkeit von einer optisch detektierbaren Reaktion und der bestimmten Temperatur des Gasgemischs.
Abstract:
The output of optical computing devices containing an integrated computational element (212) can be corrected when an interferent substance or condition is present. The devices may comprise an optional electromagnetic radiation source (200); a sample detection unit comprising an integrated computational element (212) and a detector (216) configured to receive electromagnetic radiation that has optically interacted with the integrated computational element and produce a sample signal associated therewith; an interferent monitor (222) located proximal to the sample detection unit, the interferent monitor being configured to produce an interferent signal associated with an interferent substance; and a signal processing unit (220) operable to convert the interferent signal into an interferent input form suitable for being computationally combined with the sample signal, the signal processing unit being further operable to computationally combine the sample signal and the interferent input form to determine a characteristic of a sample in real-time or near real-time.
Abstract:
An optical absorption gas sensor has an LED light source and a photodiode light detector, a temperature measuring device for measuring the LED temperature and a temperature measuring device for measuring the photodiode temperature. The sensor is calibrated by measuring the response of photodiode current at zero analyte gas concentration and at a reference analyte gas concentration. From these measurement, calibration data taking into account the effect of photodiode temperature on the sensitivity of the photodiode and, independently, the effect of changes in the spectrum of light output by the LED on the light detected by the photodiode with LED temperature can be obtained. Calibration data is written to memory in the gas sensor and in operation of the gas sensor, the output is compensated for both LED and photodiode temperature. The LED and photodiode can therefore be relatively far apart and operate at significantly different temperatures allowing greater freedom of optical pathway design.
Abstract:
A system for operating an opto-luminescent chemical transducer which is adapted to generate, in response to an input of excitation light, an output radiation capable of absorption by an analyte, thereby to enable a concentration level of the analyte to be established, comprises: a source of cyclically-varying incident excitation light directed upon the transducer; a detector adapted to generate an output signal whose amplitude varies with time in accordance with intensity of output radiation generated by the transducer as a result of its opto-luminescence; and a phase detection module for determining phase of the output signal within a cycle of variation of the excitation light.