Abstract:
Systems and methods for optical fluid identification approximation and calibration are described herein. One example method includes populating a database with a calculated pseudo optical sensor (CPOS) response of a first optical tool to a first sample fluid. The CPOS response of the first optical tool may be based on a transmittance spectrum of a sample fluid and may comprise a complex calculation using selected components of the first optical tool. A first model may be generated based, at least in part, on the database. The first model may receive as an input an optical sensor response and output a predicted fluid property. A second model may also be generated based, at least in part, on the database. The second model may receive as an input at least one known/measured fluid/environmental property value and may output a predicted pseudo optical sensor response of the first optical tool.
Abstract:
Optical computing devices including a light source that emits electromagnetic radiation into an optical train extending from the light source to a detector, a substance arranged in the optical train and configured to optically interact with the electromagnetic radiation and produce sample interacted radiation, a processor array arranged in the optical train and including a plurality of ICE arranged on a substrate and configured to optically interact with the electromagnetic radiation. The detector receives modified electromagnetic radiation generated through optical interaction of the electromagnetic radiation with the substance and the processor array. A weighting device is coupled to one or more of the ICE to optically apply a weighting factor to the modified electromagnetic radiation prior to being received by the detector, wherein the detector generates an output signal indicative of a characteristic of the substance based on beams of modified electromagnetic radiation.
Abstract:
A method and apparatus is described for optically scanning a field of view, the field of view including at least part of an organ as exposed during surgery, and for identifying and classifying areas of tumor within the field of view. The apparatus obtains a spectrum at each pixel of the field of view, and classifies pixels with a kNN-type or neural network classifier previously trained on samples of tumor and organ classified by a pathologist. Embodiments use statistical parameters extracted from each pixel and neighboring pixels. Results are displayed as a color-encoded map of tissue types to the surgeon. In variations, the apparatus provides light at one or more fluorescence stimulus wavelengths and measures the fluorescence light spectrum emitted from tissue corresponding to each stimulus wavelength. The measured emitted fluorescence light spectra are further used by the classifier to identify tissue types in the field of view.
Abstract:
In or near real-time monitoring of fluids can take place using an opticoanalytical device that is configured for monitoring the fluid. Fluids can be monitored prior to or during their introduction into a subterranean formation using the opticoanalytical devices. Produced fluids from a subterranean formation can be monitored in a like manner. The methods can comprise providing a fracturing fluid comprising a base fluid and at least one fracturing fluid component; introducing the fracturing fluid into a subterranean formation at a pressure sufficient to create or enhance at least one fracture therein, thereby performing a fracturing operation in the subterranean formation; and monitoring a characteristic of the fracturing fluid or a formation fluid using at least a first opticoanalytical device within the subterranean formation, during a flow back of the fracturing fluid produced from the subterranean formation, or both.
Abstract:
A method for analyzing a mixture includes identifying a plurality of possible components of the mixture, calculating at least one feature for at least a portion of the plurality of possible components, and calculating a probability value for at least a portion of the plurality of possible components based on the at least one feature and at least one transfer function
Abstract:
Methods, systems, and computer program products for optimizing a probe geometry for spectroscopic measurement in a turbid medium are provided. A probe geometry comprising one emitting entity and at least on collecting entity is selected. A simulation is performed to generate optical parameter values measured by the probe geometry. The measured optical parameter values are input to an inversion algorithm to produce corresponding optical properties as output. The produced optical properties are compared with known optical properties known and a degree of matching between the produced optical properties and the known optical properties is determined. The simulation and inversion steps are repeated for a plurality of additional probe geometries, each differing in at least one property. An optimization algorithm is applied at each iteration to select an optimal probe geometry.
Abstract:
A system and method to predict the progression of disease of a test sample. A group of known biological samples is provided. Each known biological sample has an associated known outcome including a non-diseased sample or a diseased sample. A Raman data set is obtained for each known biological sample. Each Raman data set is analyzed to identify a diseased or non-diseased reference Raman data set depending on whether respective biological sample is the non-diseased sample or the diseased sample. A first database is generated where the first database contains reference Raman data sets for all diseased samples. A second database is generated where the second database contains reference Raman data sets for all non-diseased samples. A test Raman data set of a test biological sample is received, where the test biological sample has an unknown disease status. A diagnostic is provided as to whether the test sample is a non-diseased sample or a diseased sample. The diagnostic is obtained by comparing the test Raman data set against the reference Raman data sets in the first and the second databases using a chemometric technique. A prediction of the progression of disease may be then provided.
Abstract:
A method for improving the measurement capability of multi-parameter inspection systems includes performing a measuring procedure to acquire a measured signature of a sample, calculating weighting factors representing a correlation between structural parameters of the sample by using a weighting algorithm, transforming the weighting factors into a sampling function by using a transforming rule, updating the measured signature to form an updated measured signature and generating a plurality of updated nominal signatures according to the sampling function, and comparing the updated measured signature and the updated nominal signatures to determine the structural parameters of the sample.
Abstract:
A system and method to provide a diagnosis of the breast disease state of a test breast sample. A database containing a plurality of reference Raman data sets is provided where each reference Raman data set has an associated known breast sample and an associated known breast disease state. A test breast sample is irradiated with substantially monochromatic light to generate scattered photons resulting in a test Raman data set. The test Raman data set is compared to the plurality of reference Raman data sets using a chemometric technique. Based on the comparison, a diagnosis of a breast disease state of the test breast sample is provided. The breast disease state includes invasive ductal carcinoma or invasive lobular carcinoma disease state.
Abstract:
A method for predicting water clarity at a plurality of water depths for a location including providing training data to a neural network, the training data representative of water measurements at the location, thereafter receiving inputs including temperature, salinity, tidal information, water depth, and sediment data, and generating values for optical attenuation at a wavelength at a plurality of depths. In one embodiment, a default cloudy day algorithm operates at all times and a clear sky algorithm operates only when clear satellite images are available.