Abstract:
A presente invenção é baseada em um cristal fotônico bidimensional onde são inseridos defeitos que originam dois guias de onda e uma cavidade ressonante. Um sinal eletromagnético que atravessa o dispositivo é confinado no interior dos defeitos, por conta do photonic band gap associado à estrutura periódica que os circunda. Possui como principal função o controle do fluxo de um sinal eletromagnético ao longo de um cana! de comunicações, bloqueando (estado desligado) ou admitindo (estado ligado) a passagem do mesmo. Também promove a alteração da direção de propagação de um sinal eletromagnético por um ângulo de 120 graus, proporcionando maior flexibilidade no design de sistemas ópticos integrados. O princípio de funcionamento do dispositivo baseia-se na excitação de modos dipolo na cavidade ressonante do mesmo, segundo a aplicação de um campo magnético externo DC sobre o material magneto-óptíco que o constitui. Nos estados ligado e desligado o material magneto-óptico está magnetizado e não magnetizado, respectivamente.
Abstract:
There is provided a wearable display comprising a light source emitting light of a first wavelength; a first SBG device having a front side and a rear side; first and second transparent plates sandwiching said SBG device; independently switchable transparent electrode elements applied to the opposing surfaces of said transparent plates, a means for spatio-temporally modulating light from the light source to provide image light and a means for coupling the image light into the light guide formed by the two transparent plates and the SBG device. The SBG device comprises a multiplicity of selectively switchable grating regions. The SBG device diffracts image into the pupil of an eye.
Abstract:
Disclosed is an apparatus and method including a semiconductor substrate including a waveguide having a guiding region and one or more bounding regions coupled to the guiding region; a first PN junction disposed in the substrate and coupled to one or more of the one or more bounding regions; and dopant atoms disposed within the semiconductor substrate at the PN junction. An alternate embodiment includes a memory device, having a waveguide having a guiding region for propagating a radiation signal; an influencer, coupled to the waveguide, for controlling a characteristic of the radiation signal propagating in the waveguide between a first mode and a second mode; and a latching layer, coupled to the guiding region and responsive to the influencer, for retaining the characteristic of the radiation signal for a memory cycle.
Abstract:
Ce transmetteur photonique comporte : - une couche (20) en matériau diélectrique, - une sous-couche (30) en matériau cristallin III-V dopé s'étend directement sur la couche (20) en matériau diélectrique, - une source laser (7) comportant la sous-couche (30) en matériau cristallin III-V dopé - un modulateur comportant : • un guide d'onde (70) formé par des extrémités proximales (12, 32) en vis-à-vis de première et seconde électrodes (120, 130) et une portion de la couche (20) en matériau diélectrique interposée entre ces extrémités proximales (12, 32), et • une zone (34) uniquement composée d'un ou plusieurs matériaux diélectriques solides (20, 116) qui s'étend depuis une extrémité distale (31) de la seconde électrode (130) jusqu'à un substrat (1, 2), et sous la totalité de l'extrémité distale (31) de la seconde électrode (130).
Abstract:
The invention relates to a wafer scale process for the manufacture of optical waveguide devices, and particularly for the manufacture of ridge waveguide devices, and the improved waveguides made thereby. The present invention has found a process for achieving sub-micron control of an optical waveguiding layer thickness by providing a dimensionally stable wafer assembly into which adhesive (26) can be introduced without altering the planar relationship between a carrier wafer (12) and an optically transmissive wafer (14) in wafer scale manufacture. This process permits wafer scale manufacture of optical waveguide devices including thin optically transmissive layers. A pattern of spacer pedestals (20) is created by a deposition and etch back, or by a surface etch process to precisely reference surface information from a master surface to a carrier wafer to a thin optically transmissive wafer. The tolerance achievable in accordance with this process provides consistent yield across the wafer.
Abstract:
A tunable optical signal device and method of using the same having at least two filter elements, each of said filter elements being made of a material having an adjustable parameter, wherein the adjustable parameter is maintained at slightly different values for adjacent filter elements.
Abstract:
A display device has an insulated basic substrate (1). A plurality of light waveguides (Y n ) are arranged on the basic substrate in parallel to each other. A plurality of signal wires is arranged in parallel and in a manner to be crossed with the light waveguides (Y n ), respectively. A plurality of photoconductive layers (6) three-dimensionally are laid between the light waveguides (Y n ) and the signal wires (X n ) and directly connected with each light guiding portion (4) of the light waveguides (Y n ) at respective crosspoints between the light waveguides (Y n ) and the signal electrodes (X n ). A plurality of pixel electrodes (5) provided are to be connected with the photoconductive layers (6), respectively. An insulated opposed substrate located in opposition to the basic substrate (1) with a display medium (13) therebetween and having an opposed electrode on the surface opposed to the basic substrate (1). And the relation among an index of refraction nl of the light guiding portion (4), an index of refraction n₂ of the photoconductive layer (6), and an angle of incidence ϑ of light given from the light guiding portion (4) to the photoconductive layer (6) meeting the following expression of n₁ sin ϑ