Abstract:
An X-ray source device includes a cathode arrangement including a cathode device arranged to emit an electron beam therefrom. An anode arrangement includes an anode spaced apart from the cathode device at a focal distance and arranged to receive the electron beam from the cathode device at one of a plurality of focal spots thereon. The anode is movable such that each of the focal spots is alignable to receive the electron beam, in some instances while maintaining the focal distance of the anode from the cathode device. An associated method of forming an X-ray source device is also provided.
Abstract:
An x-ray generating apparatus comprises: a vacuum container having a main body, and a moving member coupled movably and airtightly to the main body via a vacuum bellows; and a guide mechanism, provided on an outer side of the vacuum container, for regulating the movement and inclination of the moving member in an approaching/separation direction with respect to an electron gun. The guide mechanism includes a guide portion where a guide flat surface along a plane orthogonal to a central axis of the electron beam is formed, the guide portion being provided on the main body side, a guided portion where a guided flat surface facing the guide flat surface is formed, the guided portion being provided on the moving member side, and at least three rolling elements placed between the guide flat surface and the guided flat surface.
Abstract:
[Object] The present invention provides an X-ray irradiation device capable of adjusting the energy of X-rays in a wide range, and an analysis device equipped with the X-ray irradiation device.[Solving Means] An X-ray irradiation device according to an embodiment of the present invention focuses X-rays emitted from an X-ray generation mechanism to a predetermined focal position by a focusing mechanism. The X-ray generation mechanism has a structure which generates a plurality of X-rays having different wavelengths. The focusing mechanism has a structure in which the plurality of X-rays are focused to the same focal position by focusing elements having diffraction characteristics suitable for the wavelengths of the respective X-rays generated by the X-ray generation mechanism.
Abstract:
A transmission x-ray tube comprising an end window hermetically sealed to a flexible coupling. The flexible coupling can allow the window to shift or tilt in one direction or another direction to allow an electron beam to impinge upon one region of the window or another region of the window.A method of utilizing different regions of an x-ray tube target by tilting an x-ray tube window at an acute angle with respect to an electron beam axis to cause an electron beam to impinge on a selected region of the window and tilting the window in a different direction to allow the electron beam to impinge on a different selected region of the window.
Abstract:
A distributed X-ray source (3) and an imaging system (1) comprising such an X-ray source (3) are proposed. The X-ray source (3) comprises an electron beam source arrangement (19) and an anode arrangement (17). The electron beam source arrangement (19) is adapted to emit electron beams (24) towards at least two locally distinct focal spots (27) on the anode arrangement (17). Therein, the X-ray source is adapted for displacing the anode arrangement (17) with respect to the electron beam source arrangement (19). While the provision of a plurality of focal spots allows acquisition of projection images under different projection angles thereby allowing reconstruction of three-dimensional X-ray images e.g. in tomosynthesis application, a displacement motion of the anode arrangement (17) with respect to the electron beam source arrangement (19) may allow for distributed heat flux to the anode arrangement thereby possibly reducing cooling requirements.
Abstract:
A system for generating image data includes a voltage supply configured for applying a first voltage to generate radiation at a first energy level, and for applying a second voltage to generate radiation at a second energy level, an imager for generating a first set of image data based at least in part on the radiation at the first energy level, and for generating a second set of image data based at least in part on the radiation at the second energy level, and a processor for creating composite image data using the first and the second sets of image data.
Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
The X-ray tube having a rotating and linearly translating anode includes an evacuated shell having a substantially cylindrical anode rotatably mounted therein. The substantially cylindrical anode may be rotated through the usage of any suitable rotational drive, and the substantially cylindrical anode is further selectively and controllably linearly translatable about the rotating longitudinal axis thereof. A cathode is further mounted within the evacuated shell for producing an electron beam that impinges on an outer surface of the substantially cylindrical anode, thus forming a focal spot thereon. X-rays are generated from the focal spot and are transmitted through an X-ray permeable window formed in the evacuated shell.
Abstract:
A multi-color X-ray generator includes an electron beam generator 10 which accelerates an electron beam to generate a pulse electron beam 1 and which transmits the beam along a predetermined rectilinear orbit 2, a composite laser generator 20 which successively generates a plurality of pulse laser lights 3a, 3b having different wavelengths, and a laser light introduction device 30 which introduces the pulse laser lights along the rectilinear orbit 2 to be opposed to the pulse electron beam 1, so that the plurality of pulse laser lights 3a, 3b successively head-on collide with the pulse electron beam 1 along the rectilinear orbit 2 so as to generate two or more types of monochromatic hard X-rays 4 (4a, 4b).
Abstract:
There is disclosed a device including: an electron beam generation device 10 which accelerates a pulse electron beam 1 to transmit the beam through a predetermined rectilinear orbit 2; a laser generation device 20 which generates a pulse laser light 3; a laser light introduction device 30 which introduces the pulse laser light 3 onto the rectilinear orbit 2 so as to collide with the pulse electron beam 1; a metal target 42 which generates a particular X-ray 5 by collision with the pulse electron beam 1: and a target moving device 40 capable of moving the metal target between a collision position 2a on the rectilinear orbit and a retreat position out of the orbit.