Abstract:
A device and method for fabrication includes providing a first substrate assembly including a first substrate and a first metal layer formed on the first substrate and a second substrate assembly including a second substrate and a second metal layer formed on the second substrate. The first metal layer is joined to the second metal layer using a cold welding process wherein one of the first substrate and the second substrate includes a semiconductor channel layer for forming a transistor device.
Abstract:
A method for direct bonding between a first element and a second element, including at least the following steps: deposition of at least one first porous layer on at least one face of the first element, where the first porous layer is compressible, production of at least one bonding layer on the first porous layer, rigid connection by direct bonding of the second element with the first bonding layer.
Abstract:
A die bonding tool having a tool head including a plurality of openings fluidly coupled to a vacuum source to selectively secure a semiconductor die onto the tool head via the application of a suction force. The plurality of openings have non-uniform cross-sectional areas, including one or more first openings having a first cross-sectional area and one or more second openings having a second cross-sectional area that is greater than the first cross-section area. A first minimum offset distance between each of the first openings and any peripheral edge of the tool head is less than a second minimum offset distance between each of the second openings and any peripheral edge of the tool head. The configuration of the openings in the tool head may improve bonding of the semiconductor die to a substrate by inhibiting air becoming trapped between the semiconductor die and the substrate during the bonding process.
Abstract:
In an embodiment, a device includes: a first wafer including a first substrate and a first interconnect structure, a sidewall of the first interconnect structure forming an obtuse angle with a sidewall of the first substrate; and a second wafer bonded to the first wafer, the second wafer including a second substrate and a second interconnect structure, the sidewall of the first substrate being laterally offset from a sidewall of the second substrate and a sidewall of the second interconnect structure.
Abstract:
Embodiments herein relate to systems, apparatuses, techniques or processes for hybrid bonding a die to a substrate. In embodiments, the die may be a chiplet that is bonded to an interconnect. In embodiments, the die may be a plurality of dies, where the plurality of dies are hybrid bonded to a substrate, to each other, or a combination of both. Other embodiments may be described and/or claimed.
Abstract:
A first semiconductor structure having a first metallic structure that has a convex outermost surface and a second semiconductor structure having a second metallic structure that has a concave outermost surface are first provided. The first and second metallic structures are provided utilizing liner systems that have an opposite galvanic reaction to the metal or metal alloy that constitutes the first and second metallic structures such that during a planarization process the metal liners have a different removal rate than the metal or metal alloy that constitutes the first and second metallic structures. The first semiconductor structure and the second semiconductor structure are then bonded together such that the convex outermost surface of the first metallic structure is in direct contact with the concave outermost surface of the second metallic structure.
Abstract:
There is provided a method of bonding substrates to each other, which includes: holding a first substrate on a lower surface of a first holding part; adjusting a temperature of a second substrate by a temperature adjusting part to become higher than a temperature of the first substrate; holding the second substrate on an upper surface of a second holding part; inspecting a state of the second substrate by imaging a plurality of reference points of the second substrate with a first imaging part, measuring positions of the reference points, and comparing a measurement result with a predetermined permissible range; and pressing a central portion of the first substrate with a pressing member, bringing the central portion of the first substrate into contact with a central portion of the second substrate, and sequentially bonding the first substrate and the second substrate.
Abstract:
An integrated circuit structure includes a package component, which further includes a non-porous dielectric layer having a first porosity, and a porous dielectric layer over and contacting the non-porous dielectric layer, wherein the porous dielectric layer has a second porosity higher than the first porosity. A bond pad penetrates through the non-porous dielectric layer and the porous dielectric layer. A dielectric barrier layer is overlying, and in contact with, the porous dielectric layer. The bond pad is exposed through the dielectric barrier layer. The dielectric barrier layer has a planar top surface. The bond pad has a planar top surface higher than a bottom surface of the dielectric barrier layer.
Abstract:
A semiconductor device includes: a first substrate including a first surface layer that includes first and second electrodes; a second substrate including a second surface layer that includes third and fourth electrodes, and directly bonded to the first substrate such that the second surface layer is in contact with the first surface layer; and a functional film provided between the second and fourth electrodes. The first and third electrodes are bonded together so as to be in contact with each other, and the second electrode, the functional film, and the fourth electrode constitute a passive element.
Abstract:
A method for producing at least one photosensitive infrared detector by assembling a first electronic component including plural photodiodes sensitive to infrared radiation and a second electronic component including at least one electronic circuit for reading the plurality of photodiodes, an infrared detector, and an assembly for producing such a detector, the method including: production, on each one of the first and second components, of a connection face formed at least partially by a silicon oxide (SiO2)-based layer; bonding the first component and the second component by the connection faces thereof, thus performing the direct bonding of the two components. The method can simplify hybridization of heterogeneous components for producing an infrared detector.