Abstract:
The present disclosure relates to polyamide compositions and resulting injection-molded articles that can be plated, e.g., metal coated, to form aesthetic injection-molded articles. The polyamide compositions may include from 45 wt.% to 75 wt.% of an polyamide, from 2 wt.% to 40 wt.% of an etchable filler, from 10 wt.% to 40 wt.% of a semi-structural mineral, and optionally from 0.1 wt.% to 13 wt.% of additive. The polyamide composition imparts very good surface appearance to injection-molded articles that are substantially free of visual defects.
Abstract:
A polymer, applications thereof, and method of making a nanofiber nonwoven product is disclosed which includes: providing a spinnable polyamide polymer composition comprising a solution of a polyamide in a suitable solvent, wherein the polyamide has a Relative Viscosity of from 30-300; a basis weight greater than 1 gm/m 2 , solution-spinning the polyamide polymer composition into a plurality of nanofibers having an average fiber diameter of less than 1 micron (1000 nanometers); and forming the nanofibers into said nonwoven product which thereby has an average nanofiber diameter of less than 1 micron (1000 nanometers). Preferably, the nonwoven product is solution-spun from a process selected from (i) centrifugal spinning using a rotating spinneret or (ii) 2-phase propellant-gas spinning including extruding the polyamide polymer composition in liquid form with pressurized gas through a fiber-forming channel. Suitable solvents include formic acid, sulfuric acid, trifluoroacetic acid, hexafluoroisopropanol (HFIP) and phenols including m-cresol.
Abstract:
A customizable polyamide polymer, in particular Nylon 66, Nylon 6, and copolyamides, having a high molecular weight, excellent color, and low gel content is disclosed. In particular, disclosed is a polymer having a relative viscosity greater than 50 as measured in a 90% strength formic acid solution; consistent viscosity with a standard deviation of less than 1; a gel content no greater than 50 ppm as measured by insolubles larger than 10 micron; an optical defect content of less than 2,000 parts per million (ppm) as measured by optical control system (OCS). The polymer can be made into monofilaments or a multifilament yarn. Also disclosed is a process of producing the polymer using in-line vacuum finishing technology in the absence of steam or other gases in the second, or post condensation, step of the polymer process.
Abstract:
A polyamide composition comprising from 45 wt% to 95 wt% of polyamide polymer and from 5 wt% to 55 wt% of a modifier comprising a C18-44 dimer acid or a C18-44 dimer amine or a combination thereof. A number average molecular weight of the polyamide polymer is less than 30,000 g/mol. The polyamide composition has a chemical resistance, as measured by exposure to HCl (10%) for 14 days at 58 C, resulting in a weight loss of less than 3.0 wt%; and a moisture uptake of less than about 2.0 wt% moisture at 95% RH. A process for preparing the polyamide composition is also disclosed.
Abstract:
A base polyamide composition comprising a nylon mixture having caprolactam units from 1 wppb to 50 wppm catalyst composition; and greater than 0.75 wt% residual caprolactam, wherein the base polyamide composition has a delta end group level ranging from 30 µeq/gram to 90 µeq/gram.
Abstract:
A terpolymer composition is described that contains a statistical amount of 50-98 wt% of a first repeating AA-BB comonomer unit; 1-25 wt% of a second repeating AA-BB comonomer unit; and 1-25 wt% of a repeating lactam comonomer unit or 1-25 wt% of a third repeating AA-BB comonomer unit, where the terpolymer composition exhibits a high melting point similar to that of PA66 while also exhibiting a significantly reduced crystallization rate and crystallization temperature.
Abstract:
The present disclosure relates to polymer resins, fibers, and yarns with permanent antimicrobial activity, and a method of producing the same. In one embodiment, the antimicrobial polymer resin comprises a polymer having less than 2500 ppm of zinc dispersed within the polymer, less than 1000 ppm of phosphorus, wherein the weight ratio of zinc to phosphorus is at least 1.3:1 or less than 0.64:1.
Abstract:
The present disclosure relates to processes for producing high molecular weight polyamides from caprolactam. In particular, the present disclosure relates to processes for adding water during Solid State Polymerization (SSP) to remove residual caprolactam to form high molecular weight polyamides, e.g., Nylon 6 and Nylon 6,6 copolymers, having low residual caprolactam monomer content. The water addition step controls the SSP process for a specific time to produce polyamides with a desired molecular weight and low residual caprolactam monomer content.
Abstract:
The present disclosure relates to fluid bed processes that utilize silica particles as a fluidization aid. The process comprises reacting one or more reactants in a reactor comprising a fluid bed to form a product. The fluid bed comprises a catalyst composition comprising a catalyst and an inert additive composition comprising silica particles from 0.5 wt% to 30 wt%, based on the total weight of the catalyst composition. The silica particles are discrete, inert particles that are mixed with the catalyst in the fluid bed.
Abstract:
The present disclosure relates to a process for preparing polymers using a plug flow reactor. The process includes providing an aqueous monomer solution comprising amide monomers; evaporating the aqueous monomer solution to form a concentrated monomer solution; and polymerizing the concentrated monomer solution in a plug flow reactor comprising a shell side and a tube side to form a first process fluid comprising polymers. The concentrated monomer solution flows on the shell side from the inlet to the outlet.