Abstract:
Transparent articles comprising transparent, nonmetallic substrate and a transparent film stack is sputter deposited on the substrate. The film stack is characterized by including at least one infrared reflective metal film, a dielectric film over the metal film, and a protective silicon nitride film of 10 Å to 150 Å in thickness over the said dielectric film. The dielectric film desirably has substantially the same index of refraction as does silicon nitride and is contiguous with the silicon nitride film.
Abstract:
Transparent articles comprising transparent, nonmetallic substrate and a transparent film stack is sputter deposited on the substrate. The film stack is characterized by including at least one infrared reflective metal film, a dielectric film over the metal film, and a protective silicon nitride film of 10 Å to 150 Å in thickness over the said dielectric film. The dielectric film desirably has substantially the same index of refraction as does silicon nitride and is contiguous with the silicon nitride film.
Abstract:
A multilayer glass panel may be cut using a laser cutting technique. In some examples, the technique involves directing a laser beam into to panel to form a separation line. The separation line includes a plurality of spaced-apart defect columns extending at least partially through a first glass substrate but not through a second glass substrate. The plurality of spaced-apart defect columns each include a plurality of spaced-apart filamentation flaws. The example method can also involve separating a portion of the first glass substrate from the second glass substrate along the separation line to thereby configure the multilayer panel with a shelf defined by a portion of the second glass substrate extending outwardly from the separation line.
Abstract:
An electrical characteristic of a privacy glazing structure and indicative of a health of the privacy glazing structure can be measured at a first time and at a second time later than the first time. In response to detecting a change in the electrical characteristic indicating a change in the health of the privacy glazing structure, one or more parameters of an electrical drive signal can be adjusted to compensate for the change in the health of the privacy glazing structure. The electrical characteristic can be measured at a plurality of times after the second time and compared to the electrical characteristic measured at the first time. If, at any of the plurality of times, the measured electrical characteristic differs from the electrical characteristic measured at the first time by more than a threshold amount, one or more parameters of the electrical drive signal can be adjusted.
Abstract:
A privacy glazing structure may include an electrically controllable optically active material that provides controlled transition between a privacy or scattering state and a visible or transmittance state. To make electrical connections with electrode layers that control the optically active material, the privacy glazing structure may include electrode engagement regions. In some examples, the electrode engagement regions are formed as notches in peripheral edges of opposed panes bounding the optically active material. The notches may or may not overlap to provide a through conduit in the region of overlap for wiring. In either case, the notches may allow the remainder of the structure to have a flush edge surface for ease of downstream processing.
Abstract:
A controllable privacy structure, such as a window or door, may include an electrically controllable optically active material connected to a driver. The driver can control the application and/or removal of electrical energy to the optically active material to transition from a scattering state in which visibility through the structure is inhibited to a transparent state in which visibility through the structure is comparatively clear. The driver may need to be located in relatively close physical proximity to the privacy structure the driver is intended to control. Devices, systems, and techniques are described for discretely positioning a driver relative to a privacy structure to be controlled.
Abstract:
A driver for an electrically dynamic structure may store and release energy during polarity cycling to improve the energy efficiency of operation. In some examples, the driver includes an energy storage element. In operation, the driver can charge an electrically controllable optically active material to a first operating voltage at a first polarity and subsequently discharge the optically active material during polarity reversal. The driver may store energy released from the optically active material during discharging and subsequently release the energy to charge the optically active material to a second operating voltage at a second polarity different than the first polarity.
Abstract:
A hinge assembly includes a first arm, a second arm, a rotatable pin coupling, and a power transfer conduit. The rotatable pin coupling rotationally couples the second arm to the first arm. The first arm defines a first portion of a channel, the second arm defines a second portion of the channel, and rotatable pin coupling defines a third portion of the channel. The power transfer conduit extends through the first portion of the channel at the first arm, the third portion of the channel at the rotatable pin coupling, and the second portion of the channel at the second arm.
Abstract:
A driver may be used to drive an electrically controllable optically active material in a privacy structure. In some examples, the driver receives power from a power source at a supply voltage and a supply apparent power level and converts the power received from the power source down to a converted voltage and a converted apparent power level. The converted voltage is less than the supply voltage and the converted apparent power level is less than the supply apparent power level. The driver may deliver power at the converted voltage and the converted apparent power level to a voltage convertor, which increase the converted voltage to an operating voltage. The driver can further condition power received from the voltage convertor having the operating voltage and operating apparent power level to provide a drive signal and provide the drive signal the electrically controllable optically active material of the privacy structure.