Abstract:
A vertical roller mill has grinding rollers which roll over a grinding path of a rotatable grinding table, and a surrounding nozzle ring separation area for conveying and separating gas. A coarse fraction of ground material is entrained in gas upwards in ducts from a location that is below, at, or above the nozzle ring separation area and is transported into an entry to a material separator located above the grinding table.
Abstract:
A method of improving leach kinetics and recovery during atmospheric or above-atmospheric leaching of a metal sulfide is disclosed. A system for practicing the aforementioned method is also disclosed. Apparatus for practicing the aforementioned method is also disclosed. A new composition of matter which is formed by the aforementioned method, and which may be utilized in the system and apparatus is further disclosed. The new composition of matter may exhibit improved leach kinetics, and may have some utility in the semi-conductor arts, including uses within photovoltaic materials.
Abstract:
A method of improving metal leach kinetics and recovery during atmospheric or substantially atmospheric leaching of a metal sulfide is disclosed. In some embodiments, the method may comprise the steps of: (a) producing a metal sulfide flotation concentrate; (b) processing the metal sulfide concentrate in a reductive activation circuit that operates at a first redox potential, to produce a reductively-activated metal sulfide concentrate; and, (c) subsequently processing the activated metal sulfide concentrate in an oxidative leach circuit to extract metal values. In some disclosed embodiments, reductive activation steps may be employed prior to oxidative leaching steps (including heap leap leaching or bio-leaching steps). In some embodiments, physico-chemical processing steps may be employed during reductive activation and/or oxidative leaching. Systems for practicing the aforementioned methods are also disclosed.
Abstract:
A method of controlling frothing during atmospheric or substantially atmospheric leaching of a metal sulfide is disclosed. In some embodiments, the method may comprise the steps of (a) producing a metal sulfide concentrate via flotation; (b) producing a tailings stream via flotation; and, (c) diverting a portion or all of said produced tailings stream to an atmospheric or substantially atmospheric sulfide leach circuit. A metal recovery flowsheet is also disclosed. In some embodiments, the metal recovery flowsheet may comprise a unit operation comprising: (a) a sulfide concentrator comprising a flotation circuit, the flotation circuit producing a metal sulfide concentrate stream, and a tailings stream; and, (b) an atmospheric or substantially atmospheric metal sulfide leach circuit. The sulfide concentrator may be operatively connected to the atmospheric or substantially atmospheric metal sulfide leach circuit via both of said metal sulfide concentrate stream, and said tailings stream.
Abstract:
Disclosed, is a dosing apparatus [1] which is configured to provide a predetermined amount of material from one vessel to another vessel. The dosing apparatus [1] may comprise a dosing head having a dosing tube [9] and a dosing rod [12] which is movable within said dosing tube [9]. The dosing rod [12] may comprise a dosing chamber [10] which may be filled with a predetermined amount of material. Also described, is a method of dosing which utilizes the dosing apparatus [1] disclosed. In some embodiments, the method may comprise providing a dosing apparatus [1], extending the dosing rod [12] with respect to the dosing tube [9], loading the dosing chamber [10] with a predetermined amount of material, and, retracting the dosing rod [12] with respect to the dosing tube [9] to close the dosing chamber [10]. One or more air and/or liquid cleaning steps may be employed, wherein a cleaning unit [17, 117] may be utilized to clean the dosing rod [12] and/or a funnel [4].
Abstract:
A classifier cleaning and optimization device is provided. The device includes a chamber that is adapted to contain a fluidized bed, an array of two or more adjacently arranged inclined plates positioned above the fluidized bed wherein an inclined channel is formed between each pair of adjacent inclined plates, and a means for introducing a process liquid into the chamber between the fluidized bed and the array of inclined plates such that in use, the process fluid travels through at least one of the inclined channels. A method of cleaning the separation section of a classifier is also disclosed herein.
Abstract:
A system for the continuous monitoring of wear is disclosed. The system comprises a flotation cell having at least one flotation component. At least one detector is provided to the at least one flotation component, and at least one sensor is provided to the flotation cell which is configured to communicate with the at least one detector during operation of the flotation cell. In use, the at least one flotation component wears away and ultimately affects a function of the least one detector. The at least one sensor is configured to monitor said function of the least one detector. When the at least one sensor detects a change in the signal of the at least one detector, an operator is notified that maintenance or flotation component replacement may be necessary.
Abstract:
A scroll screen centrifugal separator includes a distributor that is configured to receive slurry received from a feed conduit. The distributor is configured to deflect the received slurry to a screen of the scroll screen centrifugal separator. In some embodiments, the distributor may include a distributor that has a flat surface encircled by a lip or having one or more lips positioned on the flat surface, an inclined surface, or a declined surface that faces the mouth of the feed conduit. In other embodiments, the distributor may include a plurality of dam members for defining passageways through which slurry is passable through the distributor prior to being ejected to a screen of the separator. In other embodiments, the distributor may include a distributor plate that has a plurality of radial arms attached thereto that are configured to direct slurry to the basket with a rotational velocity.
Abstract:
Disclosed herein are embodiments of a vibrating screen (10) for separation of materials such as ores in mining, quarrying, and mineral processing. The vibrating screen (10) herein disclosed may include a chassis (100) with two side walls (102) with a plurality of support members (104) therebetween and a screen mounting system that receives screen panels (120). At least one of the side walls (102) may have a recess (132) that receives a protrusion (160) of a mounting plate (114) of a vibrator (126).
Abstract:
The present invention is directed to a method of continuously calcining a limestone particle mix comprising a fine fraction of limestone particles and a coarser fraction of limestone particles. The limestone particles heat treated in a flash calciner in which the mixture is entrained and heated in process gas for an amount of time sufficient to fully calcine the fine fraction but not the coarser fraction. The process gas is separated from the heated limestone mixture. The mixture is directed to a retention vessel in which the mixture is retained for an amount of time sufficient to fully calcine the coarser fraction utilizing the process heat present in the limestone mixture. No external heat needs to be added to the retention vessel during the retention step to promote calcination.