Abstract:
The invention concerns a powder drying system (1) comprising a carbon monoxide (CO) gas detection system adapted for detection of CO gas from smoldering powders in a powder drying system component, such as a spray dryer chamber (200), a fluid bed (500) or a bag filter (400), which CO gas detection system comprises at least one inlet CO gas detector (3) arranged on at least one gas inlet of a powder drying system component such as to provide at least one inlet CO gas content measurement, at least one outlet CO gas detector (3) arranged on at least one gas outlet of a powder drying system component such as to provide at least one outlet CO gas content measurement, and an analyzing unit (5) adapted for receiving the at least one inlet CO gas content measurement, receiving the at least one outlet CO gas content measurement and comparing the sum of the at least one inlet CO gas content measurement and the sum of the at least one outlet CO gas content measurement while compensating for dilution, mixing, and time delay of the outlet CO gas content measurement. At least the at least one outlet CO gas detector (3) comprises an IR laser transmitter and is adapted for detecting over a measurement volume (6) and is arranged on the at least one gas outlet in such a way that said measurement volume (6) extends directly inside a gas flow (20) in said at least one gas outlet.
Abstract:
The sanitary diverter valve (70) is for use in a drying system or powder conveying system including conveying lines and a purge line of a purge arrangement. The sanitary diverter valve comprises a valve housing (71) with a number of openings (72, 73, 74) configured to be connected to respective lines of the system. The valve housing (71) is substantially cylindrical and includes a first opening (72), a second opening (73) and a third opening (74). Furthermore, the diverter valve (70) comprises a rotatable diversion member (75) provided with a flow channel (76) having a first end (76a) and a second end (76b), an open space (77) being defined between the valve housing (71) and the rotatable diversion member (75). The rotatable diversion member (75) is configured to be rotated between a first position and a second position to allow that fluid communication is selectively provided between the first opening (72) and the third opening (74) and between the first opening (72) and the second opening (73) of the valve housing (71).
Abstract:
In the air disperser (4) having a number of components including a top, a bottom and an outer circumferential wall forming a space (45) defined within an inner radius and an outer radius and having an air inlet (81), a set of guide vanes (7), and an air outlet (82) at the inner radius adapted to be positioned above a feed outlet from atomizing means, at least some of the components are formed by precision metal forming such as metal spinning.
Abstract:
The air disperser (4) for a spray drying apparatus has an air inlet (81) leading to a space (45) defined within an inner radius and an outer radius in which a set of guide vanes (7) is positioned. A top, a bottom and an outer circumferential wall are defined, and an air outlet (82) at the inner radius is adapted to be positioned above a feed outlet from atomizing means. Each guide vane (7) has a pre-defined length in the radial direction. At least the bottom and outer wall of said space (45) are provided by a base module (5). The top is provided by a top plate (6) and the set of guide vanes (7) is releasably secured to a fixating device (10, 11) to form a framework, and the framework is secured relative to the base module (5) in the axial direction by the top plate (6).
Abstract:
The insert (20) is adapted to be fitted into an atomizer wheel. Each insert (20) has a longitudinal axis and comprises an inner end face (21), an outer end face (22), an external surface (23) and an internal surface (24) defining a channel (35) having a centre axis (c) and extending between an inlet (25) at the inner end face (21) and an outlet (26) at the outer end face (22). At least the inlet (25) is offset from the longitudinal axis such that the centre axis of the channel (35) is offset from the longitudinal axis of the insert (20). The insert (20) is adapted to be utilized in an atomizer wheel for a spray dryer for atomizing slurries of abrasive material, for instance for spray drying absorption for flue gas cleaning.
Abstract:
FIG. 1 is a front view of a first image in a sequence of a display screen or a portion thereof with an animated graphical user interface; FIG. 2 is a front view of a second image thereof; and, FIG. 3 is a front view of a third image thereof. The appearance of the image transitions sequentially between the images shown in FIGS. 1-3. The process or period in which an image transitions to another forms no part of the claimed design. The outer broken lines showing of display screen or a portion thereof form no part of the claimed design. The other broken lines form part of the claim, showing part of the animated graphical user interface.
Abstract:
The powder drying system comprises a powder processing unit (1), and a filter unit (400) defining a central vertical axis (405) and including a filtering chamber (401) accommodating a plurality of bag filters (407), each having a bag filter wall and a top opening, a top portion (402), and an exhaust chamber (403) at or near the top portion (402). The filtering chamber (401) is provided with an inlet (410) configured to allow entry of powder carrying gas to be filtered, and the exhaust chamber (403) has an outlet (420) configured to allow exhaust of filtered gas. In the filtering chamber (401), gas flows through the wall of the bag filters (407), upwards and out through the top opening of the bag filters (407), into the exhaust chamber (403) and further to the outlet (420). the inlet (410) of the filtering chamber (401) is positioned at the top portion (402) of the filter unit (400), and that said inlet (410) includes at least one inlet duct section (415) adjacent the filtering chamber (401) and arranged substantially centrally in the top portion (402) of the filter unit (400)
Abstract:
A spray drying apparatus has a spray drying chamber; a liquid feed atomizer; a drying gas disperser; a perforated bottom; and a plenum chamber with an outlet below the perforated bottom. At least one guide plate is provided in the plenum chamber to direct gas, which is passing through the perforated bottom into the plenum chamber, towards the bottom of the plenum chamber. The guide plates have lower edges extending on average down to at least half-way between the perforated bottom of the spray drying chamber and the bottom of the plenum chamber.
Abstract:
A method for training an operator of a spray drying plant, the spray drying plant including a plurality of plant elements including pre-processing elements, a spray drying element, post-processing elements, powder recovery elements, and a programmable logic controller, PLC. The method including the steps of: obtaining a transient model of the spray drying plant, wherein the transient model includes transient sub-models of the plurality of plant elements; calculating repeatedly simulated sensor data based on the obtained transient model, using a processing unit; displaying on a display a training human machine interface, tHMI, configured to communicate with the transient model of the spray drying plant, and to display the simulated sensor data and control data for the transient model; and updating the transient model based on operator input on the tHMI, for controlling the transient model of the spray drying plant.
Abstract:
A cyclone (4) for separation of solids and gases comprising a predefined circumference and at least one inlet (42a), for supplying a mixed stream of powder and air/gas, a first outlet in the form of a powder outlet (43) at the bottom of the cyclone (4) for extracting powder, a vortex finder (45) at the top of the cyclone, said vortex finder (45) further comprising a wall (50) and a second outlet in the form of an air/gas outlet (44) for extracting air/gas, characterized in that said cyclone (4) comprises a secondary powder extraction system (46) including a third outlet (48a), located in or at the vortex finder (45) to extract powder particles from the mixed stream entering the vortex finder (45).