Abstract:
In a card storage device containing a non-volatile memory and a buffer memory, the buffer memory includes a plurality of banks. Data is transferred sequentially from a host CPU to the banks of the buffer memory, data is transferred to the non-volatile memory from a bank that becomes full, a write operation is started when one unit of data to be written into the non-volatile memory at a time has been transferred and, without waiting for the data to be written, the next write data is transferred from the host CPU to a bank from which write data has been transferred.
Abstract:
A semiconductor device having a first circuit block supplied with a first operating voltage, a second circuit block supplied with a second operating voltage, a voltage generating circuit for generating a third operating voltage in response to the first operating voltage, and a third circuit block supplied with the third operating voltage. Preferably, the third operating voltage is generated such that the first operating voltage is increased to a fourth operating voltage by a voltage-up converter, and then the fourth operating voltage is dropped to the third operating voltage by a voltage down-converter. Hence, a power supply operating internally stably in spite of use of a relatively fluctuating voltage can be provided even in the case where a power-supply voltage is dropped.
Abstract:
Salient electrodes on a semiconductor chip and leads on a film substrate are to be connected together with a high accuracy. A change in lead pitch which occurs at the time of connecting salient electrodes on a semiconductor chip and inner leads on a film substrate with each other is taken into account and a correction is made beforehand to the pitch of the inner leads. Likewise, a change in lead pitch which occurs at the time of connecting electrodes on a liquid crystal substrate and outer leads on the film substrate with each other is taken into account and a correction is made beforehand to the pitch of the outer leads.
Abstract:
It is intended to improve the production yield of QFN (Quad Flat Non-leaded package) and attain a multi-pin structure. After a resin sealing member for sealing a semiconductor chip is formed by molding, a peripheral portion of the resin sealing member and a lead frame are both cut along a cutting line which is positioned inside (on a central side of the resin sealing member) of a line (molding line) extending along an outer edge of the resin sealing member, whereby the whole surface (upper and lower surfaces and both side faces) of each of leads exposed to side faces (cut faces) of the resin sealing member is covered with resin, thus preventing the occurrence of metallic burrs on the cut faces of the leads.
Abstract:
A multiport memory has a plurality of RAMs and a port expansion unit electrically connected to access ports of the RAMs. The port expansion unit includes an input circuit which allows access control information for activating the RAMs in parallel every memory cycles to be collectively inputted thereto by a plurality of memory cycles, a timing generator which generates internal clock signals capable of serially prescribing each memory cycle plural times during one cycle of a clock signal (ck), and a logic circuit capable of sequentially supplying the access control information inputted to the input circuit to the plurality of RAMs in parallel in parts every serial memory cycles synchronized with the internal clock signals. The port expansion unit allows access to the access ports with the plurality of RAMs as a single multiport memory apparently.
Abstract:
The invention intends to provide a technique that achieves a sufficient phase margin with ease. The circuit includes a power supply circuit that is formed with a phase compensating resistor and a phase compensating capacitor, between a second input terminal of a differential amplifier and a low supply voltage. Thereby, the first pole frequency in the overall gain is determined by the first pole frequency in the voltage-dividing resistor stage in the Bode diagram for the pole/zero compensation, which is shifted to a lower frequency. Also, the zero point cancels the first pole frequency in the differential amplifier stage, which reduces the phase delay to secure the phase margin. And, since the phase compensating resistor can take a considerably high resistance, the same characteristic can be achieved with a low capacitance of the phase compensating capacitor; thereby, the phase compensation becomes possible with a resistor and a capacitor having a smaller size than the pole/zero compensation with the internal supply voltage.
Abstract:
A semiconductor device comprising a semiconductor chip with plural electrodes arranged on a main surface thereof, plural leads electrically connected respectively to the plural electrodes on the semiconductor chip, and a resin sealing body which seals the semiconductor chip and the plural leads, wherein the plural leads include first leads and second leads adjacent to the first leads, the first leads having first external connections exposed from a mounting surface of the resin sealing body and positioned near a side face of the resin sealing body, the second leads having second external connections exposed from the mounting surface of the resin sealing body and positioned closer to the semiconductor chip with respect to the first external connections. The first and second leads are fixed to the semiconductor chip. The semiconductor device is suitable for a multi-pin structure and the manufacturing yield thereof is improved.
Abstract:
In a magnetic disk memory device, the shifting speed of the magnetic head in time of power supply interruption is detected, and a voice coil motor is controlled in accordance with the detected shifting speed to enable the head to be shunted safely and promptly. In a magnetic disk memory device having a spindle motor for revolving a magnetic disk, a magnetic head for reading information from the magnetic disk, a voice coil motor for shifting this magnetic head, and a voice coil motor drive circuit for controlling the drive current of the voice coil motor, the shifting speed of the head in time of power supply interruption is detected on the basis of the back electromotive force generating on the coil of the voice coil motor in time of power supply interruption, there are further provided a retract control circuit for generating a current command value for the voice coil motor drive circuit on the basis of the result of detection and a booster circuit for boosting a voltage resulting from the rectification of the back electromotive force generating in the coil of the spindle motor, wherein the voice coil motor drive circuit and the retract control circuit are operated with the voltage boosted by the booster circuit in time of power supply interruption to control the current to be made to flow to the coil of the voice coil motor and thereby to shunt the magnetic head.
Abstract:
A first clamp circuit and a second clamp circuit stacked thereon in vertical respectively for clamping unwanted level voltages are provided between the high potential side power source and low potential side power source and an intermediate node formed by vertical stacking of the first clamp circuit and second clamp circuit is coupled with the power source for internal circuit. Since a capacitor originally provided in the internal circuit is allocated in parallel to the first clamp circuit, impedance is reduced due to existence of the capacitor and potential difference due to over-current flowing in the chip is reduced. Accordingly, potential difference due to over-current flowing into the chip may be reduced and static electricity dielectric strength can be improved by allowing higher over-current. Thereby, impedance when the clamp circuits are stacked in two stages.
Abstract:
In order to prevent the contamination of wafers made of a transition metal in a semiconductor mass production process, the mass production method of a semiconductor integrated circuit device of the invention comprises the steps of depositing an Ru film on individual wafers passing through a wafer process, removing the Ru film from outer edge portions of a device side and a back side of individual wafers, on which said Ru film has been deposited, by means of an aqueous solution containing orthoperiodic acid and nitric acid, and subjecting said individual wafers, from which said Ru film has been removed, to a lithographic step, an inspection step or a thermal treating step that is in common use relation with a plurality of wafers belonging to lower layer steps (an initial element formation step and a wiring step prior to the formation of a gate insulating film).