Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which a user equipment performs an inter-radio access technology (RAT) mobility procedure from a first network to a second network while idle mode signaling reduction (ISR) is active, locally deactivates (ISR) in connection with completion of the inter-RAT mobility procedure, and initiates a location management procedure in the second network. Depending on the respective type of the first and second network, and the connection state of the (UE) with respect to the first network, the mobility procedure may be performed in response to a mobility command received from the first network, or in response to a mobility condition of the first network as detected by the (UE).
Abstract:
In accordance with aspects of the disclosure, a method, apparatus, and computer program product are provided for wireless communication. The method, apparatus, and computer program product may be configured to determine that a device is switching from a first cell and a first location to a second cell and a second location to implement a mobile terminated circuit switched fallback process, generate a routing area update message including a flag indicating a pending data packet for communication, and transmit the generated routing area update message.
Abstract:
Network re-selection by an idle mobile device between multiple radio access technologies (RATs) is provided for communication networks without a network-based solution. When a user equipment (UE) enters idle mode while camped to a first RAT network, it initiates an out of service search procedure that causes the UE to search for other RATs within a same public land mobile network (PLMN). If another RAT network is detected, the UE determines whether the priority of the detected RAT is higher than the priority of the first RAT. When the detected RAT has a higher priority than the first RAT, the UE re-selects and camps to that detected RAT network. If the detected RAT does not have a higher priority or no other RAT is detected within the PLMN, the UE re-camps to the first RAT network.
Abstract:
Systems and methodologies are described herein that facilitate efficient transfer of quality of service (QoS) context during inter-radio access technology (RAT) handovers. In particular, techniques are described herein for establishing rules for whether a user equipment unit (UE) or an associated network should establish QoS for a mixed-mode application, identifying flow to bearer mappings when translating QoS across an inter-RAT handover, mapping QoS parameters of respective RATs, mitigating QoS depreciation upon multiple handovers, performing one or more actions if QoS is not acceptable in a new RAT, maintaining QoS during tunnel mode, and handling scenarios in which a UE moves between a RAT using network-initiated QoS and a RAT using UE-initiated QoS.
Abstract:
A CS fallback procedure handles conflict that may arise when handover operations occur during CS fallback. If CS fallback is initiated for an access terminal and handover of that access terminal is then initiated before the CS fallback completes, the target for the handover is informed of the CS fallback so that the target may perform the appropriate CS fallback operations.
Abstract:
A mobile device or access terminal of a wireless wide area network (WWAN) communication system is provisioned for Multi-Mode System Selection (MMSS) wherein an MMSS System Priority List (MSPL) is used with respect to the underlying system selection priority list (e.g., Private Land Mobile Network (PLMN) list). Relating a current location to one or more entries in an MMSS Location Associated Priority List (MLPLs) enables scaling a range of entries in the PLMN list, indicating whether the MSPL apply to the entire list of PLMNs stored in an access terminal or to some subset of the PLMN List. Similarly, the present innovation addresses whether the MSPL applies to the entire Preferred Roaming List (PRL) or some subset of a geo-spatial location (GEO) area.
Abstract:
Devices and methods are provided for supporting single carrier Radio Transmission Technology (1xRTT) and High Rate Packet Data (HRPD) neighbor lists over LTE, thereby enabling efficient scans for 3GPP2 neighbors with minimal interruption to the LTE operations both when idle or when in-traffic. In one embodiment, the method may involve accessing a neighbor list, each neighboring system in the list being prioritized based at least in part on whether the access terminal (AT) supports a hybrid mode. For example, the method may involve selecting the 3GPP2 system to handin to based at least in part on the neighbor list.
Abstract:
Radio access interworking technologies allow a target network to notify a source network that a mobile device has moved from source network to target network, wherein mobile device does not need to perform notification to source network. Further, source network can provide a first subset of overhead information to mobile device and, after moving to target network, mobile device can receive a second subset of overhead information from target network. Further, mobile device can perform prehashing prior to moving to target network based on a channel list received from source network.
Abstract:
An access terminal pre-registers with a second access network via a first access network to ensure a quick handover in the future. Frequent pre-registration attempts are avoided by implementing a hysteresis timer that restricts when a pre-registration process can be initiated. The hysteresis timer is started when pre-registration is initiated by the access terminal. No new pre-registration attempts are permitted if the hysteresis timer has not expired. An abort condition can cause the hysteresis timer to be aborted early, and a new pre-registration can be initiated. Access points in the first access network may be grouped into one or more pre-registration zones. If the access terminal moves from a first access point to a second access point, a new pre-registration is skipped if the first and second access points have the same pre-registration zone or the second access point is aware of the pre-registration zone for the first access point.
Abstract:
A communication network includes at least one base station, at least one relay station, and a plurality of subscriber stations. Within the communication network, a method for resource allocation of transmissions comprises: classifying each of a plurality of subscriber stations as one of a directly communicatively coupled subscriber station and an indirectly communicatively coupled subscriber station; scheduling transmissions of the directly communicatively coupled subscriber stations to a first time zone; and scheduling transmissions of the indirectly communicatively coupled subscriber stations to a second time zone.