Abstract:
Disclosed is a novel method of controlling the formation of biuret in urea production. This is accomplished by reducing or preventing the formation of biuret in a concentration section, particularly in one or more concentrators or evaporators. The method comprises controlling the residence time of a urea aqueous stream treated in such concentration section in a manner independently of the volume flow per time interval of said stream into said concentration section. The residence time can be controlled, e.g., by providing the concentration section with an adjustable volume or by adding a gas to the urea stream to be treated. A combination of such measures can also be applied.
Abstract:
The invention relates to a process for the production of urea ammonium nitrate, a system and a method of modifying a plant. The process comprises subjecting ammonia-containing off-gas resulting from the production of ammonium nitrate (AN off-gas) to condensation under acidic conditions so as to form an acidic condensate, and using at least part of the acidic condensate as an acidic scrubbing liquid in a finishing treatment section having a gas inlet in fluid communication with a gas outlet of a finishing section of a urea production unit, wherein the finishing section is adapted to solidify urea liquid, and wherein said finishing treatment section is adapted to subject ammonia-containing off-gas of the finishing section to treatment with an acidic scrubbing liquid.
Abstract:
The present disclosure relates to a corrosion resistant duplex stainless steel (ferritic austenitic alloy) which is suitable for use in a plant for the production of urea; and uses thereof. The disclosure also relates to objects made of said duplex stainless steel. Furthermore, the present disclosure also relates to a method for the production of urea and to a plant for the production of urea comprising one or more parts made from said duplex stainless steel, and to a method of modifying an existing plant for the production of urea.
Abstract:
The present invention provides a method for increasing the capacity of a urea production complex, the method comprising a step of adding to an existing urea production complex a CO 2 production unit, which unit employs a CO 2 production method comprising: i) subjecting a hydrocarbon feed to short contact time catalytic partial oxidation (SCT- CPO) to produce a first gas mixture comprising H 2 , CO and CO 2 , ii) subjecting said first gas mixture to a water gas shift reaction yielding a second gas mixture, iii) separating CO 2 from said second gas mixture yielding a purified CO 2 stream and a hydrogen containing stream and subsequently iv) reacting said purified CO 2 stream with ammonia from the ammonia production unit to produce urea. The invention also provides a urea production complex realized by the application of this method and a urea production method.
Abstract:
Disclosed is a Hot Isostatic Pressed ferritic-austenitic steel alloy, as well objects thereof. The elementary composition of the alloy comprises, in percentages by weight: C 0 - 0.05; Si 0 - 0.8; Mn 0 - 4.0; Cr more than 29 - 35; Ni 3.0 - 10; Mo 0 - 4.0; N 0.30 - 0.55; Cu 0 – 0.8; W 0 - 3.0; S 0 - 0.03; Ce 0 – 0.2; the balance being Fe and unavoidable impurities. The objects can be particularly useful in making components for a urea production plant that require processing such as machining or drilling. A preferred use is in making, or replacing, liquid distributors as used in a stripper as is typically present in the high-pressure synthesis section of a urea plant.
Abstract translation:公开了一种热等静压型铁素体 - 奥氏体钢合金及其目的。 合金的元素组成按重量百分数计:C 0 - 0.05; Si 0-0.8; Mn 0-4.0; 铬超过29 - 35; Ni 3.0 - 10; Mo 0-4.0; N 0.30 - 0.55; Cu 0-0.8; W 0 - 3.0; S 0 - 0.03; Ce 0 - 0.2; 余量为Fe和不可避免的杂质。 这些物体在制造需要诸如机械加工或钻孔的加工的尿素生产设备的部件方面特别有用。 优选的用途是制造或替代在汽提器中使用的液体分配器,如通常存在于尿素装置的高压合成段中。
Abstract:
Disclosed is a method for the removal of urea dust from the off- gas of a finishing section (1) of a urea production plant, the method comprises subjecting the off-gas to quenching with water (06) so as to produce quenched off-gas, and subjecting the quenched off-gas to scrubbing using at least one venturi scrubber (11). As a result, a lower pressure drop over the scrubber is attained, and a more efficient growth of urea particles, facilitating the removal thereof.
Abstract:
Disclosed is a thermal energy storage system for storing collected solar thermal energy. The system comprises a solar thermal energy collection facility in the form of a field of parabolic troughs, which is in thermal communication with a molten salt circuit. The molten salt circuit is in fluid communication with a molten salt storage facility comprising at least three storage tanks that are each in fluid communication with the molten salt circuit. The multiple tanks set-up allows using cheaper materials, and a more efficient storage of thermal energy.
Abstract:
Disclosed is method for removing carbonyl sulphide and/or carbon disulphide from a sour gas stream. The method comprises subjecting the gas stream to simultaneous contact with an absorption liquid, such as an aqueous amine solution, and with a catalyst suitable for hydrolyzing carbonyl sulphide and/or carbon disulphide. To this end, the invention also provides a reactor system wherein both an absorption liquid and a catalyst are present. In a preferred embodiment, the catalyst is a heterogeneous catalyst present on or in an absorption column, either coated on the trays of a column with trays, or contained in the packing of a packed column.
Abstract:
Disclosed is a plant for the production of urea. The plant comprises conventional sections for synthesis and recovery, for evaporation and condensation, for urea finishing, and for dust scrubbing. According to the invention, an additional evaporation and condensation loop is introduced from and to the dust scrubbing section. This loop results in a more favorable energy consumption of the plant.
Abstract:
A reformer furnace (1), comprising: at least one triple conduit assembly (200), including a flue gas conduit (220) enclosing a reaction conduit (240) enclosing a product gas conduit (260), wherein: the reaction conduit (240) extends between a lower end (244) defining a reaction gas inlet (245), and a closed upper end (242); the product gas conduit (260) extends between an upper end (262) defining a product gas inlet (263), and a lower end (264) defining a product gas outlet (265); the flue gas conduit (220) extends between an upper end (222) defining a flue gas inlet (223), and a lower end (224) defining a flue gas outlet (225); and an annulus (250) between the reaction conduit (240) and the product gas conduit (260) comprises a catalyst (252); a combustion chamber (100) that encloses an approximate upper half (226, 246, 266) of the at least one triple conduit assembly (200) while an approximate lower half (228, 248, 268) thereof resides outside of and below the combustion chamber, and that includes at least one burner (110), disposed inside of the combustion chamber and outside of the flue gas conduit (220), such that the approximate upper half (226) of the flue gas conduit substantially shields the reaction conduit (240) from direct burner flame heat radiation and impingement.