Abstract:
A method and software for improving the performance of processors by incorporating an execution unit operable to decode and execute single instructions specifying three registers each containing a plurality of data elements, the execution unit operable to multiply the first and second registers and add the third register to produce a catenated result containing a plurality of data elements. Additional instructions provide group floating-point subtract, add, multiply, set less, and set greater equal operations. The set less and set greater equal operations produce alternatively zero or an identity element for each element of a catenated result, the result facilitating alternative selection of individual data elements using bitwise Boolean operations and without requiring conditional branch operations.
Abstract:
A system and software for improving the performance of processors by incorporating an execution unit operable to decode and execute single instructions specifying a data selection operand and a first and a second register providing a plurality of data elements, the data selection operand comprising a plurality of fields each selecting one of the plurality of data elements, the execution unit operable to provide the data element selected by each field of the data selection operand to a predetermined position in a catenated result.
Abstract:
Expandably wide operations are disclosed in which operands wider than the data path between a processor and memory are used in executing instructions. The expandably wide operands reduce the influence of the characteristics of the associated processor in the design of functional units performing calculations, including the width of the register file, the processor clock rate, the exception subsystem of the processor, and the sequence of operations in loading and use of the operand in a wide cache memory.
Abstract:
Systems and methods for determining turbine engine system stability encompass measuring or otherwise determining values of performance parameters, storing a data set of such values in memory, generating a stability indicator, and displaying the stability indicator on an operator interface. The stability indicator is generated by a processor operating in data communication with the computer memory, utilizing customized software algorithms to remove high frequency components, apply an adaptive filter to adjust selected parameters according to a target value of a selected target parameter, and apply a stochastic filters to estimate true values of the selected parameters, based on the remaining variation.
Abstract:
A multiplier array processing system which improves the utilization of the multiplier and adder array for lower-precision arithmetic is described. New instructions are defined which provide for the deployment of additional multiply and add operations as a result of a single instruction, and for the deployment of greater multiply and add operands as the symbol size is decreased.
Abstract:
Systems and methods for determining turbine engine system stability encompass measuring or otherwise determining values of performance parameters, storing a data set of such values in memory, generating a stability indicator, and displaying the stability indicator on an operator interface. The stability indicator is generated by a processor operating in data communication with the computer memory, utilizing customized software algorithms to remove high frequency components, apply an adaptive filter to adjust selected parameters according to a target value of a selected target parameter, and apply a stochastic filters to estimate true values of the selected parameters, based on the remaining variation.
Abstract:
A processor and method for performing outer product and outer product accumulation operations on vector operands requiring large numbers of multiplies and accumulations is disclosed.
Abstract:
A programmable processor and method for improving the performance of processors by incorporating an execution unit operable to decode and execute single instructions specifying a data selection operand and a first and a second register providing a plurality of data elements, the data selection operand comprising a plurality of fields each selecting one of the plurality of data elements, the execution unit operable to provide the data element selected by each field of the data selection operand to a predetermined position in a catenated result.
Abstract:
A programmable processor and method for improving the performance of processors by incorporating an execution unit operable to decode and execute single instructions in an instruction set comprising (a) group instructions that operate on a plurality of data elements in partitioned fields of a register to produce a catenated result, (b) aligned memory operations that move data between memory and register where the memory operand is aligned, and (c) unaligned memory operations where the memory operand is unaligned.
Abstract:
The present invention provides a system and method for expanding at least one source operand to a width greater than the width of either the general purpose register or the data path width. Operands are provided which are substantially larger than the data path width of the processor. A general purpose register is used to specify a memory address from which at least more than one, but typically several data path widths of data can be read. The data path functional unit is augmented with dedicated storage to which the memory operand is copied on an initial execution of the instruction. Further execution of the instruction or other similar instructions that specify the same memory address can read the dedicated storage to obtain the operand value. However, such reads are subject to conditions to verify that the memory operand has not been altered by intervening instructions. If the memory operand remains current, the memory operand fetch can be combined with one or more register operands in the functional unit, producing a result. The size of the result is, typically, constrained to that of a general register so that no dedicated or other special storage is required for the result.